71 resultados para Kick soccer - Motor control performance


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motivational theories of pain highlight its role in people's choices of actions that avoid bodily damage. By contrast, little is known regarding how pain influences action implementation. To explore this less-understood area, we conducted a study in which participants had to rapidly point to a target area to win money while avoiding an overlapping penalty area that would cause pain in their contralateral hand. We found that pain intensity and target-penalty proximity repelled participants' movement away from pain and that motor execution was influenced not by absolute pain magnitudes but by relative pain differences. Our results indicate that the magnitude and probability of pain have a precise role in guiding motor control and that representations of pain that guide action are, at least in part, relative rather than absolute. Additionally, our study shows that the implicit monetary valuation of pain, like many explicit valuations (e.g., patients' use of rating scales in medical contexts), is unstable, a finding that has implications for pain treatment in clinical contexts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Operation of induction machines in the high-speed and/or high-torque range requires field-weakening to comply with voltage and current physical limitations. This paper presents an anti-windup approach to this problem: rather than developing an ad-hoc field weakening strategy in the high-speed region, we equip an unconstrained vector-control design with an anti-windup module that automatically adjusts the current and flux set-points so that voltage and current constraints are satisfied at every operating point. The anti-windup module includes a feedforward modification of the set point aimed at maximizing the available torque in steady-state and a feedback modification of the controller based on an internal model-based antiwindup scheme. This paper includes a complete stability analysis of the proposed solution and presents encouraging experimental results on an industrial drive. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

© 2012 Elsevier Ltd. Motor behavior may be viewed as a problem of maximizing the utility of movement outcome in the face of sensory, motor and task uncertainty. Viewed in this way, and allowing for the availability of prior knowledge in the form of a probability distribution over possible states of the world, the choice of a movement plan and strategy for motor control becomes an application of statistical decision theory. This point of view has proven successful in recent years in accounting for movement under risk, inferring the loss function used in motor tasks, and explaining motor behavior in a wide variety of circumstances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On a daily basis, humans interact with a vast range of objects and tools. A class of tasks, which can pose a serious challenge to our motor skills, are those that involve manipulating objects with internal degrees of freedom, such as when folding laundry or using a lasso. Here, we use the framework of optimal feedback control to make predictions of how humans should interact with such objects. We confirm the predictions experimentally in a two-dimensional object manipulation task, in which subjects learned to control six different objects with complex dynamics. We show that the non-intuitive behavior observed when controlling objects with internal degrees of freedom can be accounted for by a simple cost function representing a trade-off between effort and accuracy. In addition to using a simple linear, point-mass optimal control model, we also used an optimal control model, which considers the non-linear dynamics of the human arm. We find that the more realistic optimal control model captures aspects of the data that cannot be accounted for by the linear model or other previous theories of motor control. The results suggest that our everyday interactions with objects can be understood by optimality principles and advocate the use of more realistic optimal control models for the study of human motor neuroscience.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although learning a motor skill, such as a tennis stroke, feels like a unitary experience, researchers who study motor control and learning break the processes involved into a number of interacting components. These components can be organized into four main groups. First, skilled performance requires the effective and efficient gathering of sensory information, such as deciding where and when to direct one's gaze around the court, and thus an important component of skill acquisition involves learning how best to extract task-relevant information. Second, the performer must learn key features of the task such as the geometry and mechanics of the tennis racket and ball, the properties of the court surface, and how the wind affects the ball's flight. Third, the player needs to set up different classes of control that include predictive and reactive control mechanisms that generate appropriate motor commands to achieve the task goals, as well as compliance control that specifies, for example, the stiffness with which the arm holds the racket. Finally, the successful performer can learn higher-level skills such as anticipating and countering the opponent's strategy and making effective decisions about shot selection. In this Primer we shall consider these components of motor learning using as an example how we learn to play tennis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Robotic manipulanda are extensively used in investigation of the motor control of human arm movements. They permit the application of translational forces to the arm based on its state and can be used to probe issues ranging from mechanisms of neural control to biomechanics. However, most current designs are optimized for studying either motor learning or stiffness. Even fewer include end-point torque control which is important for the simulation of objects and the study of tool use. Here we describe a modular, general purpose, two-dimensional planar manipulandum (vBOT) primarily optimized for dynamic learning paradigms. It employs a carbon fibre arm arranged as a parallelogram which is driven by motors via timing pulleys. The design minimizes the intrinsic dynamics of the manipulandum without active compensation. A novel variant of the design (WristBOT) can apply torques at the handle using an add-on cable drive mechanism. In a second variant (StiffBOT) a more rigid arm can be substituted and zero backlash belts can be used, making the StiffBOT more suitable for the study of stiffness. The three variants can be used with custom built display rigs, mounting, and air tables. We investigated the performance of the vBOT and its variants in terms of effective end-point mass, viscosity and stiffness. Finally we present an object manipulation task using the WristBOT. This demonstrates that subjects can perceive the orientation of the principal axis of an object based on haptic feedback arising from its rotational dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the field of motor control, two hypotheses have been controversial: whether the brain acquires internal models that generate accurate motor commands, or whether the brain avoids this by using the viscoelasticity of musculoskeletal system. Recent observations on relatively low stiffness during trained movements support the existence of internal models. However, no study has revealed the decrease in viscoelasticity associated with learning that would imply improvement of internal models as well as synergy between the two hypothetical mechanisms. Previously observed decreases in electromyogram (EMG) might have other explanations, such as trajectory modifications that reduce joint torques. To circumvent such complications, we required strict trajectory control and examined only successful trials having identical trajectory and torque profiles. Subjects were asked to perform a hand movement in unison with a target moving along a specified and unusual trajectory, with shoulder and elbow in the horizontal plane at the shoulder level. To evaluate joint viscoelasticity during the learning of this movement, we proposed an index of muscle co-contraction around the joint (IMCJ). The IMCJ was defined as the summation of the absolute values of antagonistic muscle torques around the joint and computed from the linear relation between surface EMG and joint torque. The IMCJ during isometric contraction, as well as during movements, was confirmed to correlate well with joint stiffness estimated using the conventional method, i.e., applying mechanical perturbations. Accordingly, the IMCJ during the learning of the movement was computed for each joint of each trial using estimated EMG-torque relationship. At the same time, the performance error for each trial was specified as the root mean square of the distance between the target and hand at each time step over the entire trajectory. The time-series data of IMCJ and performance error were decomposed into long-term components that showed decreases in IMCJ in accordance with learning with little change in the trajectory and short-term interactions between the IMCJ and performance error. A cross-correlation analysis and impulse responses both suggested that higher IMCJs follow poor performances, and lower IMCJs follow good performances within a few successive trials. Our results support the hypothesis that viscoelasticity contributes more when internal models are inaccurate, while internal models contribute more after the completion of learning. It is demonstrated that the CNS regulates viscoelasticity on a short- and long-term basis depending on performance error and finally acquires smooth and accurate movements while maintaining stability during the entire learning process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent advances in theoretical neuroscience suggest that motor control can be considered as a continuous decision-making process in which uncertainty plays a key role. Decision-makers can be risk-sensitive with respect to this uncertainty in that they may not only consider the average payoff of an outcome, but also consider the variability of the payoffs. Although such risk-sensitivity is a well-established phenomenon in psychology and economics, it has been much less studied in motor control. In fact, leading theories of motor control, such as optimal feedback control, assume that motor behaviors can be explained as the optimization of a given expected payoff or cost. Here we review evidence that humans exhibit risk-sensitivity in their motor behaviors, thereby demonstrating sensitivity to the variability of "motor costs." Furthermore, we discuss how risk-sensitivity can be incorporated into optimal feedback control models of motor control. We conclude that risk-sensitivity is an important concept in understanding individual motor behavior under uncertainty.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When a racing driver steers a car around a sharp bend, there is a trade-off between speed and accuracy, in that high speed can lead to a skid whereas a low speed increases lap time, both of which can adversely affect the driver's payoff function. While speed-accuracy trade-offs have been studied extensively, their susceptibility to risk sensitivity is much less understood, since most theories of motor control are risk neutral with respect to payoff, i.e., they only consider mean payoffs and ignore payoff variability. Here we investigate how individual risk attitudes impact a motor task that involves such a speed-accuracy trade-off. We designed an experiment where a target had to be hit and the reward (given in points) increased as a function of both subjects' endpoint accuracy and endpoint velocity. As faster movements lead to poorer endpoint accuracy, the variance of the reward increased for higher velocities. We tested subjects on two reward conditions that had the same mean reward but differed in the variance of the reward. A risk-neutral account predicts that subjects should only maximize the mean reward and hence perform identically in the two conditions. In contrast, we found that some (risk-averse) subjects chose to move with lower velocities and other (risk-seeking) subjects with higher velocities in the condition with higher reward variance (risk). This behavior is suboptimal with regard to maximizing the mean number of points but is in accordance with a risk-sensitive account of movement selection. Our study suggests that individual risk sensitivity is an important factor in motor tasks with speed-accuracy trade-offs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of shock control to transonic airfoils and wings has been demonstrated widely to have the potential to reduce wave drag. Most of the suggested control devices are two-dimensional, that is they are of uniform geometry in spanwise direction. Examples of such techniques include contour bumps and passive control. Recently it has been observed that a spanwise array of discrete three-dimensional controls can have similar benefits but also offer advantages in terms of installation complexity and drag. This paper describes research carried out in Cambridge into various three-dimensional devices, such as slots, grooves and bumps. In all cases the control device is applied to the interaction of a normal shock wave (M=1.3) with a turbulent boundary layer. Theoretical considerations are proposed to determine how such fundamental experiments can provide estimates of control performance on a transonic wing. The potential of each class of three-dimensional device for wave drag reduction on airfoils is discussed and surface bumps in particular are identified as offering potential drag savings for typical transonic wing applications under cruise conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study compared adaptation in novel force fields where trajectories were initially either stable or unstable to elucidate the processes of learning novel skills and adapting to new environments. Subjects learned to move in a null force field (NF), which was unexpectedly changed either to a velocity-dependent force field (VF), which resulted in perturbed but stable hand trajectories, or a position-dependent divergent force field (DF), which resulted in unstable trajectories. With practice, subjects learned to compensate for the perturbations produced by both force fields. Adaptation was characterized by an initial increase in the activation of all muscles followed by a gradual reduction. The time course of the increase in activation was correlated with a reduction in hand-path error for the DF but not for the VF. Adaptation to the VF could have been achieved solely by formation of an inverse dynamics model and adaptation to the DF solely by impedance control. However, indices of learning, such as hand-path error, joint torque, and electromyographic activation and deactivation suggest that the CNS combined these processes during adaptation to both force fields. Our results suggest that during the early phase of learning there is an increase in endpoint stiffness that serves to reduce hand-path error and provides additional stability, regardless of whether the dynamics are stable or unstable. We suggest that the motor control system utilizes an inverse dynamics model to learn the mean dynamics and an impedance controller to assist in the formation of the inverse dynamics model and to generate needed stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Active vibration control of a submerged hull is presented. A submarine hull can be idealised as a ring stiffened finite cylinder with applied fluid loading. At low frequencies, rotation of the propeller results in discrete tones at the blade passing frequency and its harmonics. The low frequency axial and radial vibration modes of the submerged body can result in a high level of radiated noise. Global hull modes are difficult to attenuate since passive control techniques such as damping materials are not practical due to size and weight constraints. This work investigates active vibration control of a submarine hull for attenuation of the structural and acoustic responses. Based on a feedforward algorithm at tonal frequencies, active vibration suppression of the axial and radial hull displacements are investigated. The effect of the various control arrangements on the structure-borne radiated noise is examined. Numerical simulations of the control performance are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is concerned with time-domain optimal control of active suspensions. The optimal control problem formulation has been generalised by incorporating both road disturbances (ride quality) and a representation of driver inputs (handling quality) into the optimal control formulation. A regular optimal control problem as well as a risk-sensitive exponential optimal control performance index is considered. Emphasis has been given to practical considerations including the issue of state estimation in the presence of load disturbances (driver inputs). © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Animals repeat rewarded behaviors, but the physiological basis of reward-based learning has only been partially elucidated. On one hand, experimental evidence shows that the neuromodulator dopamine carries information about rewards and affects synaptic plasticity. On the other hand, the theory of reinforcement learning provides a framework for reward-based learning. Recent models of reward-modulated spike-timing-dependent plasticity have made first steps towards bridging the gap between the two approaches, but faced two problems. First, reinforcement learning is typically formulated in a discrete framework, ill-adapted to the description of natural situations. Second, biologically plausible models of reward-modulated spike-timing-dependent plasticity require precise calculation of the reward prediction error, yet it remains to be shown how this can be computed by neurons. Here we propose a solution to these problems by extending the continuous temporal difference (TD) learning of Doya (2000) to the case of spiking neurons in an actor-critic network operating in continuous time, and with continuous state and action representations. In our model, the critic learns to predict expected future rewards in real time. Its activity, together with actual rewards, conditions the delivery of a neuromodulatory TD signal to itself and to the actor, which is responsible for action choice. In simulations, we show that such an architecture can solve a Morris water-maze-like navigation task, in a number of trials consistent with reported animal performance. We also use our model to solve the acrobot and the cartpole problems, two complex motor control tasks. Our model provides a plausible way of computing reward prediction error in the brain. Moreover, the analytically derived learning rule is consistent with experimental evidence for dopamine-modulated spike-timing-dependent plasticity.