20 resultados para Jewish collective


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Collective behavior refers to the emergence of complex migration patterns over scales larger than those of the individual elements constituting a system. It plays a pivotal role in biological systems in regulating various processes such as gastrulation, morphogenesis and tissue organization. Here, by combining experimental approaches and numerical modeling, we explore the role of cell density ('crowding'), strength of intercellular adhesion ('cohesion') and boundary conditions imposed by extracellular matrix (ECM) proteins ('constraints') in regulating the emergence of collective behavior within epithelial cell sheets. Our results show that the geometrical confinement of cells into well-defined circles induces a persistent, coordinated and synchronized rotation of cells that depends on cell density. The speed of such rotating large-scale movements slows down as the density increases. Furthermore, such collective rotation behavior depends on the size of the micropatterned circles: we observe a rotating motion of the overall cell population in the same direction for sizes of up to 200 μm. The rotating cells move as a solid body, with a uniform angular velocity. Interestingly, this upper limit leads to length scales that are similar to the natural correlation length observed for unconfined epithelial cell sheets. This behavior is strongly altered in cells that present a downregulation of adherens junctions and in cancerous cell types. We anticipate that our system provides a simple and easy approach to investigate collective cell behavior in a well-controlled and systematic manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate how a prior assumption of smoothness can be used to enhance the reconstruction of free energy profiles from multiple umbrella sampling simulations using the Bayesian Gaussian process regression approach. The method we derive allows the concurrent use of histograms and free energy gradients and can easily be extended to include further data. In Part I we review the necessary theory and test the method for one collective variable. We demonstrate improved performance with respect to the weighted histogram analysis method and obtain meaningful error bars without any significant additional computation. In Part II we consider the case of multiple collective variables and compare to a reconstruction using least squares fitting of radial basis functions. We find substantial improvements in the regimes of spatially sparse data or short sampling trajectories. A software implementation is made available on www.libatoms.org.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Directed migration of groups of cells is a critical aspect of tissue morphogenesis that ensures proper tissue organization and, consequently, function. Cells moving in groups, unlike single cells, must coordinate their migratory behavior to maintain tissue integrity. During directed migration, cells are guided by a combination of mechanical and chemical cues presented by neighboring cells and the surrounding extracellular matrix. One important class of signals that guide cell migration includes topographic cues. Although the contact guidance response of individual cells to topographic cues has been extensively characterized, little is known about the response of groups of cells to topographic cues, the impact of such cues on cell-cell coordination within groups, and the transmission of nonautonomous contact guidance information between neighboring cells. Here, we explore these phenomena by quantifying the migratory response of confluent monolayers of epithelial and fibroblast cells to contact guidance cues provided by grooved topography. We show that, in both sparse clusters and confluent sheets, individual cells are contact-guided by grooves and show more coordinated behavior on grooved versus flat substrates. Furthermore, we demonstrate both in vitro and in silico that the guidance signal provided by a groove can propagate between neighboring cells in a confluent monolayer, and that the distance over which signal propagation occurs is not significantly influenced by the strength of cell-cell junctions but is an emergent property, similar to cellular streaming, triggered by mechanical exclusion interactions within the collective system.