28 resultados para Infrastructure and Construction Projects
Resumo:
Image-based (i.e., photo/videogrammetry) and time-of-flight-based (i.e., laser scanning) technologies are typically used to collect spatial data of infrastructure. In order to help architecture, engineering, and construction (AEC) industries make cost-effective decisions in selecting between these two technologies with respect to their settings, this paper makes an attempt to measure the accuracy, quality, time efficiency, and cost of applying image-based and time-of-flight-based technologies to conduct as-built 3D reconstruction of infrastructure. In this paper, a novel comparison method is proposed, and preliminary experiments are conducted. The results reveal that if the accuracy and quality level desired for a particular application is not high (i.e., error < 10 cm, and completeness rate > 80%), image-based technologies constitute a good alternative for time-of-flight-based technologies and significantly reduce the time and cost needed for collecting the data on site.
Resumo:
Construction of geotechnical structures produces various environmental impacts. These include depletion of limited natural resources, generation of wastes and harmful substances during material productions and construction, ineffective usage of energy during processing of raw materials into construction materials, and emissions of unwanted gasses during transportation of materials and usage of equipments. With increasing interests in sustainability at the global scale, there is a need to develop a methodology that can assess environmental impacts at such scale for geotechnical construction. Using embodied energy and gas emission, quantitative measures of environmental impact are evaluated using a case study of a new high speed railway line construction in the UK. Based on the results, the keys to energy savings are (a) to optimise the usage of materials with high embodied energy intensity value (b) to optimise the transportation network and logistics for processes using primarily low embodied energy intensity materials and (c) to reuse as much materials on-site as possible to minimise the quantity of spoils or distance to disposal sites. The evaluated embodied energy and embodied carbon values are compared to those of other types of structures and of other activities and carbon tax values. Such comparisons can be used to discuss among various interested parties (clients, contractors, consultants, policy makers, etc) to make the construction industry more energy efficient. © Springer Science+Business Media B.V. 2011.
Resumo:
The Internet of Things (IOT) concept and enabling technologies such as RFID offer the prospect of linking the real world of physical objects with the virtual world of information technology to improve visibility and traceability information within supply chains and across the entire lifecycles of products, as well as enabling more intuitive interactions and greater automation possibilities. There is a huge potential for savings through process optimization and profit generation within the IOT, but the sharing of financial benefits across companies remains an unsolved issue. Existing approaches towards sharing of costs and benefits have failed to scale so far. The integration of payment solutions into the IOT architecture could solve this problem. We have reviewed different possible levels of integration. Multiple payment solutions have been researched. Finally we have developed a model that meets the requirements of the IOT in relation to openness and scalability. It supports both hardware-centric and software-centric approaches to integration of payment solutions with the IOT. Different requirements concerning payment solutions within the IOT have been defined and considered in the proposed model. Possible solution providers include telcos, e-payment service providers and new players such as banks and standardization bodies. The proposed model of integrating the Internet of Things with payment solutions will lower the barrier to invoicing for the more granular visibility information generated using the IOT. Thus, it has the potential to enable recovery of the necessary investments in IOT infrastructure and accelerate adoption of the IOT, especially for projects that are only viable when multiple benefits throughout the supply chain need to be accumulated in order to achieve a Return on Investment (ROI). In a long-term perspective, it may enable IT-departments to become profit centres instead of cost centres. © 2010 - IOS Press and the authors. All rights reserved.
Resumo:
The capability to automatically identify shapes, objects and materials from the image content through direct and indirect methodologies has enabled the development of several civil engineering related applications that assist in the design, construction and maintenance of construction projects. This capability is a product of the technological breakthroughs in the area of image processing that has allowed for the development of a large number of digital imaging applications in all industries. In this paper, an automated and content based construction site image retrieval method is presented. This method is based on image retrieval techniques, and specifically those related with material and object identification and matches known material samples with material clusters within the image content. The results demonstrate the suitability of this method for construction site image retrieval purposes and reveal the capability of existing image processing technologies to accurately identify a wealth of materials from construction site images.
Resumo:
The capability to automatically identify shapes, objects and materials from the image content through direct and indirect methodologies has enabled the development of several civil engineering related applications that assist in the design, construction and maintenance of construction projects. Examples include surface cracks detection, assessment of fire-damaged mortar, fatigue evaluation of asphalt mixes, aggregate shape measurements, velocimentry, vehicles detection, pore size distribution in geotextiles, damage detection and others. This capability is a product of the technological breakthroughs in the area of Image and Video Processing that has allowed for the development of a large number of digital imaging applications in all industries ranging from the well established medical diagnostic tools (magnetic resonance imaging, spectroscopy and nuclear medical imaging) to image searching mechanisms (image matching, content based image retrieval). Content based image retrieval techniques can also assist in the automated recognition of materials in construction site images and thus enable the development of reliable methods for image classification and retrieval. The amount of original imaging information produced yearly in the construction industry during the last decade has experienced a tremendous growth. Digital cameras and image databases are gradually replacing traditional photography while owners demand complete site photograph logs and engineers store thousands of images for each project to use in a number of construction management tasks. However, construction companies tend to store images without following any standardized indexing protocols, thus making the manual searching and retrieval a tedious and time-consuming effort. Alternatively, material and object identification techniques can be used for the development of automated, content based, construction site image retrieval methodology. These methods can utilize automatic material or object based indexing to remove the user from the time-consuming and tedious manual classification process. In this paper, a novel material identification methodology is presented. This method utilizes content based image retrieval concepts to match known material samples with material clusters within the image content. The results demonstrate the suitability of this methodology for construction site image retrieval purposes and reveal the capability of existing image processing technologies to accurately identify a wealth of materials from construction site images.
Resumo:
The capability to automatically identify shapes, objects and materials from the image content through direct and indirect methodologies has enabled the development of several civil engineering related applications that assist in the design, construction and maintenance of construction projects. This capability is a product of the technological breakthroughs in the area of Image Processing that has allowed for the development of a large number of digital imaging applications in all industries. In this paper, an automated and content based shape recognition model is presented. This model was devised to enhance the recognition capabilities of our existing material based image retrieval model. The shape recognition model is based on clustering techniques, and specifically those related with material and object segmentation. The model detects the borders of each previously detected material depicted in the image, examines its linearity (length/width ratio) and detects its orientation (horizontal/vertical). The results emonstrate the suitability of this model for construction site image retrieval purposes and reveal the capability of existing clustering technologies to accurately identify the shape of a wealth of materials from construction site images.
Resumo:
The Architecture, Engineering, Construction and Facilities Management (AEC/FM) industry is rapidly becoming a multidisciplinary, multinational and multi-billion dollar economy, involving large numbers of actors working concurrently at different locations and using heterogeneous software and hardware technologies. Since the beginning of the last decade, a great deal of effort has been spent within the field of construction IT in order to integrate data and information from most computer tools used to carry out engineering projects. For this purpose, a number of integration models have been developed, like web-centric systems and construction project modeling, a useful approach in representing construction projects and integrating data from various civil engineering applications. In the modern, distributed and dynamic construction environment it is important to retrieve and exchange information from different sources and in different data formats in order to improve the processes supported by these systems. Previous research demonstrated that a major hurdle in AEC/FM data integration in such systems is caused by its variety of data types and that a significant part of the data is stored in semi-structured or unstructured formats. Therefore, new integrative approaches are needed to handle non-structured data types like images and text files. This research is focused on the integration of construction site images. These images are a significant part of the construction documentation with thousands stored in site photographs logs of large scale projects. However, locating and identifying such data needed for the important decision making processes is a very hard and time-consuming task, while so far, there are no automated methods for associating them with other related objects. Therefore, automated methods for the integration of construction images are important for construction information management. During this research, processes for retrieval, classification, and integration of construction images in AEC/FM model based systems have been explored. Specifically, a combination of techniques from the areas of image and video processing, computer vision, information retrieval, statistics and content-based image and video retrieval have been deployed in order to develop a methodology for the retrieval of related construction site image data from components of a project model. This method has been tested on available construction site images from a variety of sources like past and current building construction and transportation projects and is able to automatically classify, store, integrate and retrieve image data files in inter-organizational systems so as to allow their usage in project management related tasks.
Resumo:
Free software and open source projects are often perceived to be of high quality. It has been suggested that the high level of quality found in some free software projects is related to the open development model which promotes peer review. While the quality of some free software projects is comparable to, if not better than, that of closed source software, not all free software projects are successful and of high quality. Even mature and successful projects face quality problems; some of these are related to the unique characteristics of free software and open source as a distributed development model led primarily by volunteers. In exploratory interviews performed with free software and open source developers, several common quality practices as well as actual quality problems have been identified. The results of these interviews are presented in this paper in order to take stock of the current status of quality in free software projects and to act as a starting point for the implementation of quality process improvement strategies.
Resumo:
Infrastructure project sustainability assessment typically entails the use of specialised assessment tools to measure and rate project performance against a set of criteria. This paper looks beyond the prevailing approaches to sustainability assessments and explores sustainability principles in terms of project risks and opportunities. Taking a risk management approach to applying sustainability concepts to projects has the potential to reconceptualise decision structures for sustainability from bespoke assessments to becoming a standard part of the project decisionmaking process. By integrating issues of sustainability into project risk management for project planning, design and construction, sustainability is considered within a more traditional business and engineering language. Currently, there is no widely practised approach for objectively considering the environmental and social context of projects alongside the more traditional project risk assessments of time, cost and quality. A risk-based approach would not solve all the issues associated with existing sustainability assessments but it would place sustainability concerns alongside other key risks and opportunities, integrating sustainability with other project decisions.
Building damage assessment for deep excavations in Singapore and the influence of building stiffness
Resumo:
One of the biggest issues for underground construction in a densely built-up urban environment is the potentially adverse impact on buildings adjacent to deep excavations. In Singapore, a building damage assessment is usually carried out using a three-staged approach to assess the risk of damage caused by major underground construction projects. However, the tensile strains used for assessing the risk of building damage are often derived using deflection ratios and horizontal strains under 'greenfield' conditions. This ignores the effects of building stiffness and in many cases may be conservative. This paper presents some findings from a study on the response of buildings to deep excavations. Firstly, the paper discusses the settlement response of an actual building - the Singapore Art Museum - adjacent to a deep excavation. By comparing the monitored building settlement with the adjacent ground settlement markers, the influence of building stiffness in modifying the response to excavation-induced settlements is observed. Using the finite element method, a numerical study on the building response to movements induced by deep excavations found a consistent relationship between the building modification factor and a newly defined relative bending stiffness of the building. This relationship can be used as a design guidance to estimate the deflection ratio in a building from the greenfield condition. By comparing the case study results with the design guidance developed from finite element analysis, this paper presents some important characteristics of the influence of building stiffness on building damages for deep excavations.