16 resultados para Indian trails.
Filtro por publicador
- Rhode Island School of Design (1)
- Aberystwyth University Repository - Reino Unido (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (4)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (115)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (3)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (37)
- Boston University Digital Common (17)
- Brock University, Canada (6)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Cámara de Comercio de Bogotá, Colombia (1)
- Cambridge University Engineering Department Publications Database (16)
- CentAUR: Central Archive University of Reading - UK (80)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (23)
- Cochin University of Science & Technology (CUSAT), India (113)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (6)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Archives@Colby (8)
- Digital Commons - Michigan Tech (3)
- Digital Commons - Montana Tech (1)
- Digital Commons @ Winthrop University (4)
- Digital Knowledge Repository of Central Drug Research Institute (17)
- Digital Peer Publishing (1)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (3)
- DigitalCommons@University of Nebraska - Lincoln (7)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (6)
- Greenwich Academic Literature Archive - UK (3)
- Helda - Digital Repository of University of Helsinki (6)
- Indian Institute of Science - Bangalore - Índia (247)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (18)
- Publishing Network for Geoscientific & Environmental Data (7)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (34)
- Queensland University of Technology - ePrints Archive (45)
- Repositorio Institucional de la Universidad Nacional Agraria (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (8)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- School of Medicine, Washington University, United States (4)
- South Carolina State Documents Depository (1)
- Universidad Autónoma de Nuevo León, Mexico (2)
- Universidade Federal do Pará (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (4)
- University of Connecticut - USA (10)
- University of Michigan (2)
- University of Southampton, United Kingdom (2)
- WestminsterResearch - UK (1)
Resumo:
Inference for latent feature models is inherently difficult as the inference space grows exponentially with the size of the input data and number of latent features. In this work, we use Kurihara & Welling (2008)'s maximization-expectation framework to perform approximate MAP inference for linear-Gaussian latent feature models with an Indian Buffet Process (IBP) prior. This formulation yields a submodular function of the features that corresponds to a lower bound on the model evidence. By adding a constant to this function, we obtain a nonnegative submodular function that can be maximized via a greedy algorithm that obtains at least a one-third approximation to the optimal solution. Our inference method scales linearly with the size of the input data, and we show the efficacy of our method on the largest datasets currently analyzed using an IBP model.