35 resultados para Incubation procedure
Resumo:
Model-based optical motion capture systems require knowledge of the position of the markers relative to the underlying skeleton, the lengths of the skeleton's limbs, and which limb each marker is attached to. These model parameters are typically assumed and entered into the system manually, although techniques exist for calculating some of them, such as the position of the markers relative to the skeleton's joints. We present a fully automatic procedure for determining these model parameters. It tracks the 2D positions of the markers on the cameras' image planes and determines which markers lie on each limb before calculating the position of the underlying skeleton. The only assumption is that the skeleton consists of rigid limbs connected with ball joints. The proposed system is demonstrated on a number of real data examples and is shown to calculate good estimates of the model parameters in each. © 2004 Elsevier B.V. All rights reserved.
Resumo:
Established firms tend to pursue incremental innovation by modifying and refining their existing products and processes rather than developing radical innovations. In the face of resistance to change and incumbent inertia, which prevent the generation of novelty, established firms have turned towards corporate entrepreneurship as a means of exploiting knowledge accumulated within its own boundaries and exploring external markets. This paper focuses on one mode of corporate entrepreneurship, corporate incubation, informed by a study of a Technology Incubator at Philips. An account of the history of the incubator traces its progress from its inception in 2002-2006 when further incubators were formed, building on this experience and focusing on lifestyle and healthcare technologies. We identify ways in which the Philips incubator represents an alternative selection environment that effectively simulated the venture capitalist model of entrepreneurial innovation. © 2009 Blackwell Publishing Ltd.
Resumo:
Established firms accumulate a significant body of knowledge, expertise and capabilities that are often secondary to their central revenue generating activities. How do they leverage this expertise in non-core technology into future value creation opportunities? In this paper we examine an attempt by the telecommunications firm BT to create value from the accumulated knowledge within its laboratories by setting up an incubator. While conceived by the board as a mechanism for leveraging the value of non-core technology into the workplace, corporate support for the incubator was withdrawn after only three years and prompted the incubator to partner with a venture capital firm, NVP, in the spin-out of ventures. Through analysis of this single case we observe how entering into such a relationship reduces the transaction costs of accessing complementary resources, capabilities and competences, while simultaneously reducing a number of the risks associated with venturing for both parties. Partnering with the venture capitalist allows the established firm to get its intellectual property into the market, for it to be tested by the market and further developed. © 2010 Inderscience Enterprises Ltd.