22 resultados para INVARIANCE-PRINCIPLE
Resumo:
In [5] it was shown that, for a standard quarter-car vehicle model and a road disturbance whose velocity profile is white noise of intensity A, the mean power dissipated in the suspension is equal to kA/2 where k is the tyre vertical stiffness. It is remarkable that the power dissipation turns out to be independent of all masses and suspension parameters. The proof in [5] makes use of a spectral formulation of white noise and is specific to linear systems. This paper casts the result in a more general form and shows that it follows from a simple application of Ito calculus. © 2012 IEEE.
Resumo:
Understanding the guiding principles of sensory coding strategies is a main goal in computational neuroscience. Among others, the principles of predictive coding and slowness appear to capture aspects of sensory processing. Predictive coding postulates that sensory systems are adapted to the structure of their input signals such that information about future inputs is encoded. Slow feature analysis (SFA) is a method for extracting slowly varying components from quickly varying input signals, thereby learning temporally invariant features. Here, we use the information bottleneck method to state an information-theoretic objective function for temporally local predictive coding. We then show that the linear case of SFA can be interpreted as a variant of predictive coding that maximizes the mutual information between the current output of the system and the input signal in the next time step. This demonstrates that the slowness principle and predictive coding are intimately related.
Resumo:
A duality transformation principle was proposed for converting a positive order homogeneous vectorfield into a negative order homogeneous vectorfield. The principle also converted a uniformly locally asymptotically stable differential equation into a uniformly bounded differential equation. The duality transformations included the geometric framework for homogeneity and the removal of origin from the state space.
Resumo:
We analyze the local equilibrium assumption for interfaces from the perspective of gauge transformations, which are the small displacements of Gibbs' dividing surface. The gauge invariance of thermodynamic properties turns out to be equivalent to conditions for jumps of bulk densities across the interface. This insight strengthens the foundations of the local equilibrium assumption for interfaces and can be used to characterize nonequilibrium interfaces in a compact and consistent way, with a clear focus on gauge-invariant properties. Using the principle of gauge invariance, we show that the validity of Clapeyron equations can be extended to nonequilibrium interfaces, and an additional jump condition for the momentum density is recognized to be of the Clapeyron type. © 2012 Europhysics Letters Association.