19 resultados para Hilbert Cube
Resumo:
This paper presents a method for the linear analysis of the stiffness and strength of open and closed cell lattices with arbitrary topology. The method hinges on a multiscale approach that separates the analysis of the lattice in two scales. At the macroscopic level, the lattice is considered as a uniform material; at the microscopic scale, on the other hand, the cell microstructure is modelled in detail by means of an in-house finite element solver. The method allows determine the macroscopic stiffness, the internal forces in the edges and walls of the lattice, as well as the global periodic buckling loads, along with their buckling modes. Four cube-based lattices and nine cell topologies derived by Archimedean polyhedra are studied. Several of them are characterized here for the first time with a particular attention on the role that the cell wall plays on the stiffness and strength properties. The method, automated in a computational routine, has been used to develop material property charts that help to gain insight into the performance of the lattices under investigation. © 2012 Elsevier B.V.
Resumo:
We consider the problem of positive observer design for positive systems defined on solid cones in Banach spaces. The design is based on the Hilbert metric and convergence properties are analyzed in the light of the Birkhoff theorem. Two main applications are discussed: positive observers for systems defined in the positive orthant, and positive observers on the cone of positive semi-definite matrices with a view on quantum systems. © 2011 IEEE.
Resumo:
Convergence analysis of consensus algorithms is revisited in the light of the Hilbert distance. The Lyapunov function used in the early analysis by Tsitsiklis is shown to be the Hilbert distance to consensus in log coordinates. Birkhoff theorem, which proves contraction of the Hilbert metric for any positive homogeneous monotone map, provides an early yet general convergence result for consensus algorithms. Because Birkhoff theorem holds in arbitrary cones, we extend consensus algorithms to the cone of positive definite matrices. The proposed generalization finds applications in the convergence analysis of quantum stochastic maps, which are a generalization of stochastic maps to non-commutative probability spaces. ©2010 IEEE.
Resumo:
Recently, it has been shown that improved wireless communication coverage can be achieved by employing distributed antenna system (DAS). The DAS RFID system is based on a novel technique whereby two or more spatially separated transmit and receive antennas are used to enable greatly enhanced tag detection performance over longer distances using antenna diversity combined with frequency and phase hopping. In this paper, we present a detection reliability evaluation of the DAS RFID in a typical lab environment. We conduct an extensive experimental analysis of passive RFID tag detection with different locations and orientations. The tag received signal strengths corresponding to various tag locations on one of the six different sides of a cube, and for different reader transmit power are collected and analyzed in this study.