122 resultados para High Temperature,Thermal Properties,Mechanical Properties,Bond Properties,Steel,Concrete,Fire Resistance Design


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Boron nitride nanotubes (BNNTs) are considered as a promising cold electron emission material owing to their negative electron affinity. BNNT field emitters show excellent oxidation endurance after high temperature thermal annealing of 600 °C in air ambient. There is no damage to the BNNTs after thermal annealing at a temperature of 600 °C and also no degradation of field emission properties. The thermally annealed BNNTs exhibit a high maximum emission current density of 8.39mA/cm2 and show very robust emission stability. The BNNTs can be a promising emitter material for field emission devices under harsh oxygen environments. © 2014 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High temperature superconductors, such as melt-processed YBCO bulks, have great advantages on trapping strong magnetic fields in liquid nitrogen. To enable them to function well, there are some traditional ways of magnetizing them, in which the YBCO bulks are magnetized instantly under a very strong source of magnetic field. These ways would consume great amounts of power to make the superconductors trap as much field as possible. Thermally Actuated Magnetization (TAM) Flux pump has been proved a perfect substitution for these expensive methods by using a relatively small magnet as the source. In this way, the field is developed gradually over many pulses. Unlike conventional flux pumping ways, the TAM does not drive the superconductor normal during the process of magnetization. In former experiments for the flux pump, some fundamental tests were done. In this paper, the experiment system is advanced to a new level with better temperature control to the thermal waves moving in the Gadolinium and with less air gap for the flux lines sweeping through the superconductor. This experiment system F leads to a stronger accumulation of the magnetic field trapped in the YBCO bulk. We also tried different ways of sending the thermal waves and found out that the pumping effect is closely related to the power of the heaters and the on and off time. © 2010 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present temperature-dependent modeling of high-temperature superconductors (HTS) to understand HTS electromagnetic phenomena where temperature fluctuation plays a nontrivial role. Thermal physics is introduced into the well-developed H-formulation model, and the effect of temperature-dependent parameters is considered. Based on the model, we perform extensive studies on two important HTS applications: quench propagation and pulse magnetization. A micrometer-scale quench model of HTS coil is developed, which can be used to estimate minimum quench energy and normal zone propagation velocity inside the coil. In addition, we study the influence of inhomogeneity of HTS bulk during pulse magnetization. We demonstrate how the inhomogeneous distribution of critical current inside the bulk results in varying degrees of heat dissipation and uniformity of final trapped field. The temperature- dependent model is proven to be a powerful tool to study the thermally coupled electromagnetic phenomena of HTS. © 2012 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an explicit time-marching formulation for the solution of the coupled thermal flow mechanical behavior of gas- hydrate sediment. The formulation considers the soil skeleton as a deformable elastoplastic continuum, with an emphasis on the effect of hydrate (and its dissociation) on the stress-strain behavior of the soil. In the formulation, the hydrate is assumed to deform with the soil and may dissociate into gas and water. The formulation is explicitly coupled, such that the changes in temperature because of energy How and hydrate dissociation affect the skeleton stresses and fluid (water and gas) pressures. This, in return, affects the mechanical behavior. A simulation of a vertical well within a layered soil is presented. It is shown that the heterogeneity of hydrate saturation causes different rates of dissociation in the layers. The difference alters the overall gas production and also the mechanical-deformation pattern, which leads to loading/ unloading shearing along the interfaces between the layers. Copyright © 2013 Society of Petorlleum Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the basic feasibility of using reactor-grade Pu in fertile-free fuel (FFF) matrix in pressurized water reactors (PWRs). Several important issues were investigated in this work: the Pu loading required to achieve a specific interrefueling interval, the impact of inert matrix composition on reactivity constrained length of cycle, and the potential of utilizing burnable poisons (BPs) to alleviate degradation of the reactivity control mechanism and temperature coefficients. Although the subject was addressed in the past, no systematic approach for assessment of BP utilization in FFF cores was published. In this work, we examine all commercially available BP materials in all geometrical arrangements currently used by the nuclear industry with regards to their potential to alleviate the problems associated with the use of FFF in PWRs. The recently proposed MgO-ZrO2 solid-state solution fuel matrix, which appears to be very promising in terms of thermal properties and radiation damage resistance, was used as a reference matrix material in this work. The neutronic impact of the relative amounts of MgO and ZrO2 in the matrix were also studied. The analysis was performed with a neutron transport and fuel assembly burnup code BOXER. A modified linear reactivity model was applied to the two-dimensional single fuel assembly results to approximate the full core characteristics. Based on the results of the performed analyses, the Pu-loaded FFF core demonstrated potential feasibility to be used in existing PWRs. Major FFF core design problems may be significantly mitigated through the correct choice of BP design. It was found that a combination of BP materials and geometries may be required to meet all FFF design goals. The use of enriched (in most effective isotope) BPs, such as 167Er and 157Gd, may further improve the BP effectiveness and reduce the fuel cycle length penalty associated with their use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As part of a study of the wear of candidate heat exchanger tube materials for use in fluidized bed combustors, two similar laboratory-scale rigs have been built and characterized. Specimens of selected alloys are carried on counter-rotating rotors immersed in a fluidized bed, and are exposed to particle impact velocities of up to approximately 3 ms-1 at temperatures up to 1000°C. The performance of this design of apparatus has been investigated in detail. The effects of several experimental variables have been studied, including angle of particle impact, specimen speed, position of the rotor within the fluidized bed, duration of exposure, bed material particle size, degradation of the bed material, degree of fluidization of the bed, and size of specimen. In many cases the results obtained with steel specimens at elevated temperatures are similar to those observed with polymeric specimens at low temperatures.