41 resultados para Henley-on-Thames (GB)
Resumo:
We experimentally show that a hybrid-integrated Mach-Zehnder switch with a high performance gate profile allows retiming of optical signals with an accuracy of 500-700fs even if the input timing jitter is increased to 3ps. © 2004 Optical Society of America.
Resumo:
An 850 nm vertical-cavity surface-emitting laser is modulated at 32 Gb/s using pulse-amplitude modulation with four levels. Transmitter predistortion generates an optimized modulation waveform, which requires a receiver bandwidth of only 15 GHz. © 2011 OSA.
Resumo:
Ultrafast self-switching of spectral-amplitude-encoded 40 Gb/s DPSK signals is demonstrated for the first time. Switching between 21 ports with 15nm maximum bin separation is achieved using a single correlator based on HNLF and an AWG. © 2009 IEEE.
Resumo:
The 7.5-Gb/s real-time end-to-end optical orthogonal frequency-division- multiplexing (OOFDM) transceivers incorporating variable power loading on each individual subcarrier are demonstrated experimentally using a live-optimized reflective semiconductor optical amplifier intensity modulator having a modulation bandwidth as narrow as 1 GHz. Real-time OOFDM signal transmission at 7.5 Gb/s over 25-km standard single-mode fiber is achieved across the $C$-band in simple intensity modulation and direct detection systems without in-line optical amplification and dispersion compensation. © 2006 IEEE.
Resumo:
Board-level optical links are an attractive alternative to their electrical counterparts as they provide higher bandwidth and lower power consumption at high data rates. However, on-board optical technology has to be cost-effective to be commercially deployed. This study presents a chip-to-chip optical interconnect formed on an optoelectronic printed circuit board that uses a simple optical coupling scheme, cost-effective materials and is compatible with well-established manufacturing processes common to the electronics industry. Details of the link architecture, modelling studies of the link's frequency response, characterisation of optical coupling efficiencies and dynamic performance studies of this proof-of-concept chip-to-chip optical interconnect are reported. The fully assembled link exhibits a -3 dBe bandwidth of 9 GHz and -3 dBo tolerances to transverse component misalignments of ±25 and ±37 μm at the input and output waveguide interfaces, respectively. The link has a total insertion loss of 6 dBo and achieves error-free transmission at a 10 Gb/s data rate with a power margin of 11.6 dBo for a bit-error-rate of 10 -12. The proposed architecture demonstrates an integration approach for high-speed board-level chip-to-chip optical links that emphasises component simplicity and manufacturability crucial to the migration of such technology into real-world commercial systems. © 2012 The Institution of Engineering and Technology.
Resumo:
Quantum key distribution (QKD) uniquely allows distribution of cryptographic keys with security verified by quantum mechanical limits. Both protocol execution and subsequent applications require the assistance of classical data communication channels. While using separate fibers is one option, it is economically more viable if data and quantum signals are simultaneously transmitted through a single fiber. However, noise-photon contamination arising from the intense data signal has severely restricted both the QKD distances and secure key rates. Here, we exploit a novel temporal-filtering effect for noise-photon rejection. This allows high-bit-rate QKD over fibers up to 90 km in length and populated with error-free bidirectional Gb/s data communications. With high-bit rate and range sufficient for important information infrastructures, such as smart cities and 10 Gbit Ethernet, QKD is a significant step closer towards wide-scale deployment in fiber networks.
Resumo:
An 850 nm vertical-cavity surface-emitting laser is modulated at 28 Gb/s using pulseamplitude modulation with three levels. Unequalized transmission over 100 m of OM3 MMF is demonstrated, with advantages over NRZ and PAM4 modulation. © 2012 OSA.
Resumo:
A novel integration method for the production of cost-effective optoelectronic printed circuit boards (OE PCBs) is presented. The proposed integration method allows fabrication of OE PCBs with manufacturing processes common to the electronics industry while enabling direct attachment of electronic components onto the board with solder reflow processes as well as board assembly with automated pick-and-place tools. The OE PCB design is based on the use of polymer multimode waveguides, end-fired optical coupling schemes, and simple electro-optic connectors, eliminating the need for additional optical components in the optical layer, such as micro-mirrors and micro-lenses. A proof-of-concept low-cost optical transceiver produced with the proposed integration method is presented. This transceiver is fabricated on a low-cost FR4 substrate, comprises a polymer Y-splitter together with the electronic circuitry of the transmitter and receiver modules and achieves error-free 10-Gb/s bidirectional data transmission. Theoretical studies on the optical coupling efficiencies and alignment tolerances achieved with the employed end-fired coupling schemes are presented while experimental results on the optical transmission characteristics, frequency response, and data transmission performance of the integrated optical links are reported. The demonstrated optoelectronic unit can be used as a front-end optical network unit in short-reach datacommunication links. © 2011-2012 IEEE.