23 resultados para HYDROLYTIC DEGRADATION
Resumo:
Metal based thermal microactuators normally have lower operation temperatures than those of Si-based ones; hence they have great potential for applications. However, metal-based thermal actuators easily suffer from degradation such as plastic deformation. In this study, planar thermal actuators were made by a single mask process using electroplated nickel as the active material, and their thermal degradation has been studied. Electrical tests show that the Ni-based thermal actuators deliver a maximum displacement of ∼20μm at an average temperature of ∼420°C, much lower than that of Si-based microactuators. However, the displacement strongly depends on the frequency and peak voltage of the pulse applied. Back bending was clearly observed at a maximum temperature as low as 240°C. Both forward and backward displacements increase with increasing the temperature up to ∼450°C, and then decreases with power. Scanning electron microscopy observation clearly showed that Ni structure deforms and reflows at power above 50mW. The compressive stress is believed to be responsible for Ni piling-up (creep), while the tensile stress upon removing the pulse current is responsible for necking at the hottest section of the device. Energy dispersive X-ray diffraction analysis revealed severe oxidation of the Ni-structure induced by Joule-heating of the current.
Resumo:
Many researchers and industry observers claim that electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) could provide vehicle-to-grid (V2G) bulk energy and ancillary services to an electricity network. This work quantified the impact on various battery characteristics whilst providing such services. The sensitivity of the impact of V2G services on battery degradation was assessed for EV and PHEV for different battery capacities, charging regimes, and battery depth of discharge. Battery degradation was found to be most dependent on energy throughput for both the EV and PHEV powertrains, but was most sensitive to charging regime (for EVs) and battery capacity (for PHEVs). When providing ancillary services, battery degradation in both powertrains was most sensitive to individual vehicle battery depth of discharge. Degradation arising from both bulk energy and ancillary services could be minimised by reducing the battery capacity of the vehicle, restricting the number of hours connected and reducing the depth of discharge of each vehicle for ancillary services. Regardless, best case minimum impacts of providing V2G services are severe such as to require multiple battery pack replacements over the vehicle lifetime. © 2013 Elsevier Ltd.