31 resultados para Grade 8 girls
Resumo:
Experimental analysis is applied for the first time to identify optimal launch conditions and carrier frequencies for SCM transmission over worst-case MMF. Potential for performance enhancement using electronic equalization is demonstrated for the first time. © 2006 Optical Society of America.
Resumo:
This paper describes a speech coding technique that has been developed in order to provide a method of digitising speech at bit rates in the range 4. 8 to 8 kb/s, that is insensitive to the effects of acoustic background noise and bit errors on the digital link. The main aim has been to develop a coding scheme which provides speech quality and robustness against noise and errors that is similar to a 16000 b/s continuously variable slope delta (CVSD) coder, but which operates at half its data rate or less. A desirable aim was to keep the complexity of the coding scheme within the scope of what could reasonably be handled by current signal processing chips or by a single custom integrated circuit. Applications areas include mobile radio and small Satcomms terminals.
Resumo:
The production of long-lived transuranic (TRU) waste is a major disadvantage of fission-based nuclear power. Previous work has indicated that TRU waste can be virtually eliminated in a pressurised water reactor (PWR) fuelled with a mixture of thorium and TRU waste, when all actinides are returned to the reactor after reprocessing. However, the optimal configuration for a fuel assembly operating this fuel cycle is likely to differ from the current configuration. In this paper, the differences in performance obtained in a reduced-moderation PWR operating this fuel cycle were investigated using WIMS. The chosen configuration allowed an increase of at least 20% in attainable burn-up for a given TRU enrichment. This will be especially important if the practical limit on TRU enrichment is low. The moderator reactivity coefficients limit the enrichment possible in the reactor, and this limit is particularly severe if a negative void coefficient is required for a fully voided core. Several strategies have been identified to mitigate this. Specifically, the control system should be designed to avoid a detrimental effect on moderator reactivity coefficients. The economic viability of this concept is likely to be dependent on the achievable thermal-hydraulic operating conditions. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Laser micro machining is fast gaining popularity as a method of fabricating micro scale structures. Lasers have been utilised for micro structuring of metals, ceramics and glass composites and with advances in material science, new materials are being developed for micro/nano products used in medical, optical, and chemical industries. Due to its favourable strength to weight ratio and extreme resistance to chemical attack, glassy carbon is a new material that offers many unique properties for micro devices. The laser machining of SIGRADUR® G grade glassy carbon was characterised using a 1065 nm wavelength Ytterbium doped pulsed fiber laser. The laser system has a selection of 25 preset waveforms with optimised peak powers for different pulsing frequencies. The optics provide spot diameter of 40 μm at the focus. The effect of fluence, transverse overlap and pulsing frequency (as waveform) on glassy carbon was investigated. Depth of removal and surface roughness were measured as machining quality indicators. The damage threshold fluence was determined to be 0.29 J/cm2 using a pulsing frequency of 250 kHz and a pulse width of 18 ns (waveform 3). Ablation rates of 17 < V < 300 μm3/pulse were observed within a fluence range of 0.98 < F < 2.98 J/cm2. For the same fluence variation, 0.6 μm to 6.8 μm deep trenches were machined. Trench widths varied from 29 μm at lower fluence to 47 μm at the higher fluence. Square pockets, 1 mm wide, were machined to understand the surface machining or milling. The depth of removal using both waveform 3 and 5 showed positive correlation with fluence, with waveform 5 causing more removal than waveform 3 for the same fluence. Machined depths varied from less than 1 μm to nearly 40 μm. For transverse overlap variation using waveform 3, the best surface finish with Rz = 1.1 μm was obtained for fluence 0.792 J/cm2 for transverse overlap of 1 μm, 6 μm, and 9 μm at machined depths of 22.9 μm, 6.6 μm, and 4.6 μm respectively. For fluence of 1.426 J/cm2, the best surface finish with Rz = 1.2 μm was obtained for transverse overlap of 6 μm, and 9 μm at machined depths of 12.46 μm, and 8.6 μm respectively. The experimental data was compiled as machining charts and utilised for fabricating a micro-embossing glassy carbon master toolsets as a capability demonstration.
Resumo:
A theoretical study compares 100 Gb/s Ethernet links and finds that multi-pulse and hybrid CAP-16/QAM-16 (PAM-8) schemes support transmission over 10 km (2 km) SMF. Multi-pulse and CAP-16/QAM-16 need 2× the number of arithmetic operations and 7× or 3× the number of filter taps respectively but exhibit reduced power dissipation compared with PAM-8.
Resumo:
Rigorous statistical analysis is applied for the first time to identify optimal launch conditions and carrier frequencies for SCM transmission over worst-case MMF. The feasibility of multichannel schemes for 10 Gb/s over 300 m is demonstrated. © 2005 Optical Society of America.
Resumo:
Rigorous statistical analysis is applied for the first time to identify optimal launch conditions and carrier frequencies for SCM transmission over worst-case MMF. The feasibility of multichannel schemes for 10 Gb/s over 300 m is demonstrated. © 2005 Optical Society of America.