161 resultados para Geometric mean diameter


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Dugdale-type cohesive zone model is used to predict the mode I crack growth resistance (R-curve) of metallic foams, with the fracture process characterized by an idealized traction-separation law that relates the crack surface traction to crack opening displacement. A quadratic yield function, involving the von Mises effective stress and mean stress, is used to account for the plastic compressibility of metallic foams. Finite element calculations are performed for the crack growth resistance under small scale yielding and small scale bridging in plane strain, with K-field boundary conditions. The following effects upon the fracture process are quantified: material hardening, bridging strength, T-stress (the non-singular stress acting parallel to the crack plane), and the shape of yield surface. To study the failure behaviour and notch sensitivity of metallic foams in the presence of large scale yielding, a study is made for panels embedded with either a centre-crack or an open hole and subjected to tensile stressing. For the centre-cracked panel, a transition crack size is predicted for which the fracture response switches from net section yielding to elastic-brittle fracture. Likewise, for a panel containing a centre-hole, a transition hole diameter exists for which the fracture response switches from net section yielding to a local maximum stress criterion at the edge of the hole.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The issues and challenges of growing GaN-based structures on large area Si substrates have been studied. These include Si slip resulting from large temperature non-uniformities and cracking due to differential thermal expansion. Using an A1N nucleation layer in conjunction with an AlGaN buffer layer for stress management, and together with the interactive use of real time in-situ optical monitoring it was possible to realise flat, crack-free and uniform GaN and LED structures on 6-inch Si (111) substrates. The EL performance of processed LED devices was also studied on-wafer, giving good EL characteristics including a forward bias voltage of ∼3.5 V at 20 mA from a 500 μm × 500 μm device. © 2009 SPIE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method for modelling and predicting the noise generated by the interaction between the unsteady wake shed from the rotor and a downstream row of stators in a modern ultra-high bypass ducted turbofan engine is described. An analytically-based model is developed to account for three main features of the problem. First, the way in which a typical unsteady wake disturbance from the rotor interacts and is distorted by the mean swirling flow as it propagates downstream. The analysis allows for the inclusion of mean entropy gradients and entropy perturbations. Second, the effects of real stator-blade geometry and proper representation of the genuinely three-dimensional nature of the problem. Third, to model the propagation of the resulting noise back upstream in mean swirling flow. The analytical nature of the problem allows for the inclusion of all wake harmonics and enables the response at all blade passing frequencies to be determined. Example results are presented for an initial wake distribution corresponding to a genuine rotor configuration. Comparisons between numerical data and the asymptotic model for the wake evolution are made. Copyright © 2004 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents results from experimental measurements on radiative transfer in FeCrAlY (a steel based high temperature alloy) foams having high porosity (95%) and different cell sizes, manufactured at low cost from the sintering route. The spectral transmittance and reflectance are measured at different infrared wavelengths ranging from 2.5 to 50 μm, which are subsequently used to determine the extinction coefficient and foam emissivity. The results show that the spectral quantities are strongly dependent on the wavelength, particularly in the short wavelength regime (<25 μm). Whilst the extinction coefficient decreases with increasing cell size, the effect of cell size on foam reflectance is not significant. When the temperature is increased, the total extinction coefficient increases but the total reflectance decreases. An analytical model based on geometric optics laws, diffraction theory and metal foam morphology is developed to predict the radiative transfer, with cell size (or cell ligament diameter) and porosity identified as the two key parameters that dictate the foam radiative properties. Close agreement between the predicted effective foam conductivity due to radiation alone and that measured is observed. At fixed porosity, the radiative conductivity of the metal foam increases with increasing cell size and temperature. © 2004 Elsevier Ltd.All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a method of rapidly producing computer-generated holograms that exhibit geometric occlusion in the reconstructed image. Conceptually, a bundle of rays is shot from every hologram sample into the object volume.We use z buffering to find the nearest intersecting object point for every ray and add its complex field contribution to the corresponding hologram sample. Each hologram sample belongs to an independent operation, allowing us to exploit the parallel computing capability of modern programmable graphics processing units (GPUs). Unlike algorithms that use points or planar segments as the basis for constructing the hologram, our algorithm's complexity is dependent on fixed system parameters, such as the number of ray-casting operations, and can therefore handle complicated models more efficiently. The finite number of hologram pixels is, in effect, a windowing function, and from analyzing the Wigner distribution function of windowed free-space transfer function we find an upper limit on the cone angle of the ray bundle. Experimentally, we found that an angular sampling distance of 0:01' for a 2:66' cone angle produces acceptable reconstruction quality. © 2009 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA microarrays provide such a huge amount of data that unsupervised methods are required to reduce the dimension of the data set and to extract meaningful biological information. This work shows that Independent Component Analysis (ICA) is a promising approach for the analysis of genome-wide transcriptomic data. The paper first presents an overview of the most popular algorithms to perform ICA. These algorithms are then applied on a microarray breast-cancer data set. Some issues about the application of ICA and the evaluation of biological relevance of the results are discussed. This study indicates that ICA significantly outperforms Principal Component Analysis (PCA).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reliable estimates for the maximum available uplift resistance from the backfill soil are essential to prevent upheaval buckling of buried pipelines. The current design code DNV RP F110 does not offer guidance on how to predict the uplift resistance when the cover:pipe diameter (H/D) ratio is less than 2. Hence the current industry practice is to discount the shear contribution from uplift resitance for design scenarios with H/D ratios less than 1. The necessity of this extra conservatism is assessed through a series of full-scale and centrifuge tests, 21 in total, at the Schofield Centre, University of Cambridge. Backfill types include saturated loose sand, saturated dense sand and dry gravel. Data revealed that the Vertical Slip Surface Model remains applicable for design scenarios in loose sand, dense sand and gravel with H/D ratios less than 1, and that there is no evidence that the contribution from shear should be ignored at these low H/D ratios. For uplift events in gravel, the shear component seems reliable if the cover is more than 1-2 times the average particle size (D50), and more research effort is currenty being carried out to verify this conclusion. Strain analysis from the Particle Image Velocimetry (PIV) technique proves that the Vertical Slip Surface Model is a good representation of the true uplift deformation mechanism in loose sand at H/D ratios between 0.5 and 3.5. At very low H/D ratios (H/D < 0.5), the deformation mechanism is more wedge-like, but the increased contribution from soil weight is likely to be compensated by the reduced shear contributions. Hence the design equation based on the Vertical Slip Surface Model still produces good estimates for the maximum available uplift resistance. The evolution of shear strain field from PIV analysis provides useful insight into how uplift resistance is mobilized as the uplift event progresses. Copyright 2010, Offshore Technology Conference.

Relevância:

20.00% 20.00%

Publicador: