29 resultados para Genetic Algorithms, Adaptation, Internet Computing
Resumo:
Genetic algorithms (GAs) have been used to tackle non-linear multi-objective optimization (MOO) problems successfully, but their success is governed by key parameters which have been shown to be sensitive to the nature of the particular problem, incorporating concerns such as the numbers of objectives and variables, and the size and topology of the search space, making it hard to determine the best settings in advance. This work describes a real-encoded multi-objective optimizing GA (MOGA) that uses self-adaptive mutation and crossover, and which is applied to optimization of an airfoil, for minimization of drag and maximization of lift coefficients. The MOGA is integrated with a Free-Form Deformation tool to manage the section geometry, and XFoil which evaluates each airfoil in terms of its aerodynamic efficiency. The performance is compared with those of the heuristic MOO algorithms, the Multi-Objective Tabu Search (MOTS) and NSGA-II, showing that this GA achieves better convergence.
Resumo:
This paper introduces a new technique called species conservation for evolving parallel subpopulations. The technique is based on the concept of dividing the population into several species according to their similarity. Each of these species is built around a dominating individual called the species seed. Species seeds found in the current generation are saved (conserved) by moving them into the next generation. Our technique has proved to be very effective in finding multiple solutions of multimodal optimization problems. We demonstrate this by applying it to a set of test problems, including some problems known to be deceptive to genetic algorithms.
Muitiobjective pressurized water reactor reload core design by nondominated genetic algorithm search
Resumo:
The design of pressurized water reactor reload cores is not only a formidable optimization problem but also, in many instances, a multiobjective problem. A genetic algorithm (GA) designed to perform true multiobjective optimization on such problems is described. Genetic algorithms simulate natural evolution. They differ from most optimization techniques by searching from one group of solutions to another, rather than from one solution to another. New solutions are generated by breeding from existing solutions. By selecting better (in a multiobjective sense) solutions as parents more often, the population can be evolved to reveal the trade-off surface between the competing objectives. An example illustrating the effectiveness of this novel method is presented and analyzed. It is found that in solving a reload design problem the algorithm evaluates a similar number of loading patterns to other state-of-the-art methods, but in the process reveals much more information about the nature of the problem being solved. The actual computational cost incurred depends: on the core simulator used; the GA itself is code independent.
Resumo:
Multi-objective Genetic Algorithms have become a popular choice to aid in optimising the size of the whole hybrid power train. Within these optimisation processes, other optimisation techniques for the control strategy are implemented. This optimisation within an optimisation requires many simulations to be run, so reducing the computational cost is highly desired. This paper presents an optimisation framework consisting of a series hybrid optimisation algorithm, in which a global search optimizes a submarine propulsion system using low-fidelity models and, in order to refine the results, a local search is used with high-fidelity models. The effectiveness of the Hybrid optimisation algorithm is demonstrated with the optimisation of a submarine propulsion system. © 2011 EPE Association - European Power Electr.
Resumo:
Algorithms are presented for detection and tracking of multiple clusters of co-ordinated targets. Based on a Markov chain Monte Carlo sampling mechanization, the new algorithms maintain a discrete approximation of the filtering density of the clusters' state. The filters' tracking efficiency is enhanced by incorporating various sampling improvement strategies into the basic Metropolis-Hastings scheme. Thus, an evolutionary stage consisting of two primary steps is introduced: 1) producing a population of different chain realizations, and 2) exchanging genetic material between samples in this population. The performance of the resulting evolutionary filtering algorithms is demonstrated in two different settings. In the first, both group and target properties are estimated whereas in the second, which consists of a very large number of targets, only the clustering structure is maintained. © 2009 IFAC.
Resumo:
We present a new haplotype-based approach for inferring local genetic ancestry of individuals in an admixed population. Most existing approaches for local ancestry estimation ignore the latent genetic relatedness between ancestral populations and treat them as independent. In this article, we exploit such information by building an inheritance model that describes both the ancestral populations and the admixed population jointly in a unified framework. Based on an assumption that the common hypothetical founder haplotypes give rise to both the ancestral and the admixed population haplotypes, we employ an infinite hidden Markov model to characterize each ancestral population and further extend it to generate the admixed population. Through an effective utilization of the population structural information under a principled nonparametric Bayesian framework, the resulting model is significantly less sensitive to the choice and the amount of training data for ancestral populations than state-of-the-art algorithms. We also improve the robustness under deviation from common modeling assumptions by incorporating population-specific scale parameters that allow variable recombination rates in different populations. Our method is applicable to an admixed population from an arbitrary number of ancestral populations and also performs competitively in terms of spurious ancestry proportions under a general multiway admixture assumption. We validate the proposed method by simulation under various admixing scenarios and present empirical analysis results from a worldwide-distributed dataset from the Human Genome Diversity Project.
Resumo:
Choosing a project manager for a construction project—particularly, large projects—is a critical project decision. The selection process involves different criteria and should be in accordance with company policies and project specifications. Traditionally, potential candidates are interviewed and the most qualified are selected in compliance with company priorities and project conditions. Precise computing models that could take various candidates’ information into consideration and then pinpoint the most qualified person with a high degree of accuracy would be beneficial. On the basis of the opinions of experienced construction company managers, this paper, through presenting a fuzzy system, identifies the important criteria in selecting a project manager. The proposed fuzzy system is based on IF-THEN rules; a genetic algorithm improves the overall accuracy as well as the functions used by the fuzzy system to make initial estimates of the cluster centers for fuzzy c-means clustering. Moreover, a back-propagation neutral network method was used to train the system. The optimal measures of the inference parameters were identified by calculating the system’s output error and propagating this error within the system. After specifying the system parameters, the membership function parameters—which by means of clustering and projection were approximated—were tuned with the genetic algorithm. Results from this system in selecting project managers show its high capability in making high-quality personnel predictions
Resumo:
This paper presents new methods for computing the step sizes of the subband-adaptive iterative shrinkage-thresholding algorithms proposed by Bayram & Selesnick and Vonesch & Unser. The method yields tighter wavelet-domain bounds of the system matrix, thus leading to improved convergence speeds. It is directly applicable to non-redundant wavelet bases, and we also adapt it for cases of redundant frames. It turns out that the simplest and most intuitive setting for the step sizes that ignores subband aliasing is often satisfactory in practice. We show that our methods can be used to advantage with reweighted least squares penalty functions as well as L1 penalties. We emphasize that the algorithms presented here are suitable for performing inverse filtering on very large datasets, including 3D data, since inversions are applied only to diagonal matrices and fast transforms are used to achieve all matrix-vector products.
Resumo:
The classical Rayleigh Quotient Iteration (RQI) computes a 1-dimensional invariant subspace of a symmetric matrix A with cubic convergence. We propose a generalization of the RQI which computes a p-dimensional invariant subspace of A. The geometry of the algorithm on the Grassmann manifold Gr(p,n) is developed to show cubic convergence and to draw connections with recently proposed Newton algorithms on Riemannian manifolds.