21 resultados para GREENHOUSE
Resumo:
Identifying strategies for reducing greenhouse gas emissions from steel production requires a comprehensive model of the sector but previous work has either failed to consider the whole supply chain or considered only a subset of possible abatement options. In this work, a global mass flow analysis is combined with process emissions intensities to allow forecasts of future steel sector emissions under all abatement options. Scenario analysis shows that global capacity for primary steel production is already near to a peak and that if sectoral emissions are to be reduced by 50% by 2050, the last required blast furnace will be built by 2020. Emissions reduction targets cannot be met by energy and emissions efficiency alone, but deploying material efficiency provides sufficient extra abatement potential.
Resumo:
Nowadays nuclear is the only greenhouse-free source that can appreciably respond to the increasing worldwide energy demand. The use of Thorium in the nuclear energy production may offer some advantages to accomplish this task. Extensive R&D on the thorium fuel cycle has been conducted in many countries around the world. Starting from the current nuclear waste policy, the EU-PUMA project focuses on the potential benefits of using the HTR core as a Pu/MA transmuter. In this paper the following aspects have been analysed: (1) the state-of-the-art of the studies on the use of Th in different reactors, (2) the use of Th in HTRs, with a particular emphasis on Th-Pu fuel cycles, (3) an original assessment of Th-Pu fuel cycles in HTR. Some aspects related to Thorium exploitation were outlined, particularly its suitability for working in pebble-bed HTR in a Th-Pu fuel cycle. The influence of the Th/Pu weight fraction at BOC in a typical HTR pebble was analysed as far as the reactivity trend versus burn-up, the energy produced per Pu mass, and the Pu isotopic composition at EOC are concerned. Although deeper investigations need to be performed in order to draw final conclusions, it is possible to state that some optimized Th percentage in the initial Pu/Th fuel could be suggested on the basis of the aim we are trying to reach. Copyright © 2009 Guido Mazzini et al.
Resumo:
Design, FEM modelling and characterization of a novel dual mode thermal conductivity and infrared absorption sensor using SOI CMOS technology is reported. The dual mode sensing capability is based on the temperature sensitivity and wideband infrared radiation emission of the resistive heating element. The sensor was fabricated at a commercial foundry using a 1 μm process and measures only 1×1 mm2. Infrared detectors usually use thermopiles in addition to a separate IR source. A single highly responsive dual mode source and sensing element targeting not only low molecular mass gases but also greenhouse gases, while consuming 40 mW power at 700°C in synthetic air, thus makes this sensor particularly viable for battery powered handheld devices. © 2013 IEEE.
Resumo:
The global trend towards urbanization means that over half of the world's population now lives in cities. Cities use energy in different proportions to national energy use averages, typically corresponding to whether a country is industrialized or developing. Cities in industrialized countries tend to use less energy per capita than the national average while cities in developing countries use more. This paper looks at existing World Bank data in respect to urban energy consumption, the emissions inventory work done by New York City, and discusses how this data highlights the need for a focus on: energy policy for buildings in industrialized cities; masterplanning and new construction standards in developing cities; and how urban energy policy can become more effective in reducing urban greenhouse gas emissions.
Resumo:
Land is not only a critical component of the earth's life support system, but also a precious resource and an important factor of production in economic systems. However, historical industrial operations have resulted in large areas of contaminated land that are only slowly being remediated. In recent years, sustainability has drawn increasing attention in the environmental remediation field. In Europe, there has been a movement towards sustainable land management; and in the US, there is an urge for green remediation. Based on a questionnaire survey and a review of existing theories and empirical evidence, this paper suggests the expanding emphasis on sustainable remediation is driven by three general factors: (1) increased recognition of secondary environmental impacts (e.g., life-cycle greenhouse gas emissions, air pollution, energy consumption, and waste production) from remediation operations, (2) stakeholders' demand for economically sustainable brownfield remediation and "green" practices, and (3) institutional pressures (e.g., social norm and public policy) that promote sustainable practices (e.g., renewable energy, green building, and waste recycling). This paper further argues that the rise of the "sustainable remediation" concept represents a critical intervention point from where the remediation field will be reshaped and new norms and standards will be established for practitioners to follow in future years. This paper presents a holistic view of sustainability considerations in remediation, and an integrated framework for sustainability assessment and decision making. The paper concludes that "sustainability" is becoming a new imperative in the environmental remediation field, with important implications for regulators, liability owners, consultants, contractors, and technology vendors. © 2014 Elsevier Ltd.
Resumo:
With the concerns over climate change and the escalation in worldwide population, sustainable development attracts more and more attention of academia, policy makers, and businesses in countries. Sustainable manufacturing is an inextricable measure to achieve sustainable development since manufacturing is one of the main energy consumers and greenhouse gas contributors. In the previous researches on production planning of manufacturing systems, environmental factor was rarely considered. This paper investigates the production planning problem under the performance measures of economy and environment with respect to seru production systems, a new manufacturing system praised as Double E (ecology and economy) in Japanese manufacturing industries. We propose a mathematical model with two objectives minimizing carbon dioxide emission and makespan for processing all product types by a seru production system. To solve this mathematical model, we develop an algorithm based on the non-dominated sorting genetic algorithm II. The computation results and analysis of three numeral examples confirm the effectiveness of our proposed algorithm. © 2014 Elsevier Ltd. All rights reserved.