21 resultados para Frequency-dependent parameters


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oscillation processes have been revealed in the course of reversible polarization study in ferroelectric liquid crystals. The oscillation frequency of polarization vector has been found to be from 1 to 30 kHz. The oscillation parameters were studied as functions of temperature. Temperature dependences of the oscillation amplitude and damping decrement have been measured.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The control of a wind turbine to the mean wind speed in a gusty wind results in very poor performance. Fluctuations in wind speed with time constants shorter than the response time of a wind turbine results in operation away from optimum design conditions. The effectiveness of a turbine operating in a gusty wind is shown though the use of an unsteady performance coefficient, C e. This performance coefficient is similar in form to a power coefficient. However in order to accommodate unsteady effects, Ce is defined as a ratio of energy extracted to the total wind energy available over a set time period. The turbine's response to real wind data is modelled, in the first instance, by assuming a constant rotational speed operation. It is shown that a significant increase in energy production can be realized by demanding a Tip Speed Ratio above the steady state optimum. The constant speed model is then further extended to incorporate inertial and controller effects. Parameters dictating how well a turbine can track a demand in Tip Speed Ratio have been identified and combined, to form a non-dimensional turbine response parameter. This parameter characterizes a turbine's ability to track a demand in Tip Speed Ratio dependent on an effective gust frequency. A significant increase in energy output of 42% and 245% is illustrated through the application of this over-speed control. This is for the constant rotational speed and Tip Speed Ratio feedback models respectively. The affect of airfoil choice on energy extraction within a gusty wind has been considered. The adaptive control logic developed enables the application of airfoils demonstrating high maximum L/D values but sharp stalling characteristics to be successfully used in a VAWT design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a Bayesian method for polyphonic music description. The method first divides an input audio signal into a series of sections called snapshots, and then estimates parameters such as fundamental frequencies and amplitudes of the notes contained in each snapshot. The parameter estimation process is based on a frequency domain modelling and Gibbs sampling. Experimental results obtained from audio signals of test note patterns are encouraging; the accuracy is better than 80% for the estimation of fundamental frequencies in terms of semitones and instrument names when the number of simultaneous notes is two.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When a thin rectangular plate is restrained on the two long edges and free on the remaining edges, the equivalent stiffness of the restraining joints can be identified by the order of the natural frequencies obtained using the free response of the plate at a single location. This work presents a method to identify the equivalent stiffness of the restraining joints, being represented as simply supporting the plate but elastically restraining it in rotation. An integral transform is used to map the autospectrum of the free response from the frequency domain to the stiffness domain in order to identify the equivalent torsional stiffness of the restrained edges of the plate and also the order of natural frequencies. The kernel of the integral transform is built interpolating data from a finite element model of the plate. The method introduced in this paper can also be applied to plates or shells with different shapes and boundary conditions. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanical amplification effect of parametric resonance has the potential to outperform direct resonance by over an order of magnitude in terms of power output. However, the excitation must first overcome the damping-dependent initiation threshold amplitude prior to accessing this more profitable region. In addition to activating the principal (1st order) parametric resonance at twice the natural frequency ω0, higher orders of parametric resonance may be accessed when the excitation frequency is in the vicinity of 2ω0/n for integer n. Together with the passive design approaches previously developed to reduce the initiation threshold to access the principal parametric resonance, vacuum packaging (< 10 torr) is employed to further reduce the threshold and unveil the higher orders. A vacuum packaged MEMS electrostatic harvester (0.278 mm3) exhibited 4 and 5 parametric resonance peaks at room pressure and vacuum respectively when scanned up to 10 g. At 5.1 ms-2, a peak power output of 20.8 nW and 166 nW is recorded for direct and principal parametric resonance respectively at atmospheric pressure; while a peak power output of 60.9 nW and 324 nW is observed for the respective resonant peaks in vacuum. Additionally, unlike direct resonance, the operational frequency bandwidth of parametric resonance broadens with lower damping. © Published under licence by IOP Publishing Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is much to gain from providing walking machines with passive dynamics, e.g. by including compliant elements in the structure. These elements can offer interesting properties such as self-stabilization, energy efficiency and simplified control. However, there is still no general design strategy for such robots and their controllers. In particular, the calibration of control parameters is often complicated because of the highly nonlinear behavior of the interactions between passive components and the environment. In this article, we propose an approach in which the calibration of a key parameter of a walking controller, namely its intrinsic frequency, is done automatically. The approach uses adaptive frequency oscillators to automatically tune the intrinsic frequency of the oscillators to the resonant frequency of a compliant quadruped robot The tuning goes beyond simple synchronization and the learned frequency stays in the controller when the robot is put to halt. The controller is model free, robust and simple. Results are presented illustrating how the controller can robustly tune itself to the robot, as well as readapt when the mass of the robot is changed. We also provide an analysis of the convergence of the frequency adaptation for a linearized plant, and show how that analysis is useful for determining which type of sensory feedback must be used for stable convergence. This approach is expected to explain some aspects of developmental processes in biological and artificial adaptive systems that "develop" through the embodied system-environment interactions. © 2006 IEEE.