111 resultados para Fluid-structure interaction
Resumo:
This paper reports a perspective investigation of computational modelling of blood fluid in microchannel devices as a preparation for future research on fluid-structure interaction (FSI) in biofluid mechanics. The investigation is carried out through two aspects, respectively on physical behaviours of blood flow in microchannels and appropriate methodology for modelling. The physics of blood flow is targeted to the challenges for describing blood flow in microchannels, including rheology of blood fluid, suspension features of red blood cells (RBCs), laminar hydrodynamic influence and effect of surface roughness. The analysis shows that due to the hyperelastic property of RBC and its comparable dimension with microchannels, blood fluid shows complex behaviours of two phase flow. The trajectory and migration of RBCs require accurate description of RBC deformation and interaction with plasma. Following on a discussion of modelling approaches, i.e. Eulerian method and Lagrangian method, the main stream modelling methods for multiphase flow are reviewed and their suitability to blood flow is analysed. It is concluded that the key issue for blood flow modelling is how to describe the suspended blood cells, modelled by Lagrangian method, and couple them with the based flow, modelled by Eulerian method. The multiphase flow methods are thereby classified based on the number of points required for describing a particle, as follows: (i) single-point particle methods, (ii) mutli-point particle methods, (iii) functional particle methods, and (iv) fluid particle methods. While single-point particle methods concentrate on particle dynamic movement, multipoint and functional particle methods can take into account particle mechanics and thus offer more detailed information for individual particles. Fluid particle methods provide good compromise between two phases, but require additional information for particle mechanics. For furthermore detailed description, we suggest to investigate the possibility using two domain coupling method, in which particles and base flow are modelled by two separated solvers. It is expected that this paper could clarify relevant issues in numerical modelling of blood flow in microchannels and induce some considerations for modelling blood flow using multiphase flow methods. © 2012 IEEE.
Resumo:
Light metal sandwich panel structures with cellular cores have attracted interest for multifunctional applications which exploit their high bend strength and impact energy absorption. This concept has been explored here using a model 6061-T6 aluminum alloy system fabricated by friction stir weld joining extruded sandwich panels with a triangular corrugated core. Micro-hardness and miniature tensile coupon testing revealed that friction stir welding reduced the strength and ductility in the welds and a narrow heat affected zone on either side of the weld by approximately 30%. Square, edge clamped sandwich panels and solid plates of equal mass per unit area were subjected to localized impulsive loading by the impact of explosively accelerated, water saturated, sand shells. The hydrodynamic load and impulse applied by the sand were gradually increased by reducing the stand-off distance between the test charge and panel surfaces. The sandwich panels suffered global bending and stretching, and localized core crushing. As the pressure applied by the sand increased, face sheet fracture by a combination of tensile stretching and shear-off occurred first at the two clamped edges of the panels that were parallel with the corrugation and weld direction. The plane of these fractures always lay within the heat affected zone of the longitudinal welds. For the most intensively loaded panels additional cracks occurred at the other clamped boundaries and in the center of the panel. To investigate the dynamic deformation and fracture processes, a particle-based method has been used to simulate the impulsive loading of the panels. This has been combined with a finite element analysis utilizing a modified Johnson-Cook constitutive relation and a Cockcroft-Latham fracture criterion that accounted for local variation in material properties. The fully coupled simulation approach enabled the relationships between the soil-explosive test charge design, panel geometry, spatially varying material properties and the panel's deformation and dynamic failure responses to be explored. This comprehensive study reveals the existence of a strong instability in the loading that results from changes in sand particle reflection during dynamic evolution of the panel's surface topology. Significant fluid-structure interaction effects are also discovered at the sample sides and corners due to changes of the sand reflection angle by the edge clamping system. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
A high-altitude tethered balloon (HATB) reaching a height of 20 km has numerous applications including communications, meteorological monitoring, surveillance and, for the current paper, geoengineering. The HATB configuration consists of a 20 km tether rising up from the ground through the troposphere, where the wind-regime can be turbulent and include high-wind velocities due to the jet-stream, up into the more stable stratosphere where the tether would be attached to a spherical balloon. This paper evaluates wind-excited vibration of a HATB and will investigate the advantages of using a streamlined instead of a circular tether profile. Streamlining the tether reduces drag but introduces stability problems and complicates the numerical modelling. Consequently, prior to a thorough investigation of the stability issues due to fluid-structure interaction, a 3D nonlinear lumped-mass HATB model is used to quantify the benefit of a streamlined tether. The benefit is quantified by comparing the system specifications - such as balloon size and the tension in the tether - required to meet certain design requirements driven by the Stratospheric Particle Injection for Climate Engineering (SPICE) project. The SPICE project is investigating the feasibility of climate engineering using a HATB.
Resumo:
The impact of a slug of dry sand particles against a metallic sandwich beam or circular sandwich plate is analysed in order to aid the design of sandwich panels for shock mitigation. The sand particles interact via a combined linear-spring-and-dashpot law whereas the face sheets and compressible core of the sandwich beam and plate are treated as rate-sensitive, elastic-plastic solids. The majority of the calculations are performed in two dimensions and entail the transverse impact of end-clamped monolithic and sandwich beams, with plane strain conditions imposed. The sand slug is of rectangular shape and comprises a random loose packing of identical, circular cylindrical particles. These calculations reveal that loading due to the sand is primarily inertial in nature with negligible fluid-structure interaction: the momentum transmitted to the beam is approximately equal to that of the incoming sand slug. For a slug of given incoming momentum, the dynamic deflection of the beam increases with decreasing duration of sand-loading until the impulsive limit is attained. Sandwich beams with thick, strong cores significantly outperform monolithic beams of equal areal mass. This performance enhancement is traced to the "sandwich effect" whereby the sandwich beams have a higher bending strength than that of the monolithic beams. Three-dimensional (3D) calculations are also performed such that the sand slug has the shape of a circular cylindrical column of finite height, and contains spherical sand particles. The 3D slug impacts a circular monolithic plate or sandwich plate and we show that sandwich plates with thick strong cores again outperform monolithic plates of equal areal mass. Finally, we demonstrate that impact by sand particles is equivalent to impact by a crushable foam projectile. The calculations on the equivalent projectile are significantly less intensive computationally, yet give predictions to within 5% of the full discrete particle calculations for the monolithic and sandwich beams and plates. These foam projectile calculations suggest that metallic foam projectiles can be used to simulate the loading by sand particles within a laboratory setting. © 2013 Elsevier Ltd.
Resumo:
The dynamic deformation of both edge clamped stainless steel sandwich panels with a pyramidal truss core and equal mass monolithic plates loaded by spherically expanding shells of dry and water saturated sand has been investigated, both experimentally and via a particle based simulation methodology. The spherically expanding sand shell is generated by detonating a sphere of explosive surrounded by a shell of either dry or water saturated synthetic sand. The measurements show that the sandwich panel and plate deflections decrease with increasing stand-off between the center of the charge and the front of the test structures. Moreover, for the same charge and sand mass, the deflections of the plates are significantly higher in the water saturated sand case compared to that of dry sand. For a given stand-off, the mid-span deflection of the sandwich panel rear faces was substantially less than that of the corresponding monolithic plate for both the dry and water saturated sand cases. The experiments were simulated via a coupled discrete-particle/ finite element scheme wherein the high velocity impacting sand is modeled by interacting particles while the plate is modeled within a Lagrangian finite element setting. The simulations are in good agreement with the measurements for the dry sand impact of both the monolithic and sandwich structures. However, the simulations underestimate the effect of stand-off in the case of the water saturated sand explosion, i.e. the deflections decrease more sharply with increasing stand-off in the experiments compared to the simulations. The simulations reveal that the momentum transmitted into the sandwich and monolithic plate structures by the sand shell is approximately the same, consistent with a small fluid-structure interaction effect. The smaller deflection of the sandwich panels is therefore primarily due to the higher bending strength of sandwich structures. © 2013 The Authors. Published by Elsevier Ltd. All rights reserved.