41 resultados para Fibrous
Resumo:
Many insects with smooth adhesive pads can rapidly enlarge their contact area by centripetal pulls on the legs, allowing them to cope with sudden mechanical perturbations such as gusts of wind or raindrops. The short time scale of this reaction excludes any neuromuscular control; it is thus more likely to be caused by mechanical properties of the pad's specialized cuticle. This soft cuticle contains numerous branched fibrils oriented almost perpendicularly to the surface. Assuming a fixed volume of the water-filled cuticle, we hypothesized that pulls could decrease the fibril angle, thereby helping the contact area to expand laterally and longitudinally. Three-dimensional fluorescence microscopy on the cuticle of smooth stick insect pads confirmed that pulls significantly reduced the fibril angle. However, the fibril angle variation appeared insufficient to explain the observed increase in contact area. Direct strain measurements in the contact zone demonstrated that pulls not only expand the cuticle laterally, but also add new contact area at the pad's outer edge.
Resumo:
Fibrous collagenous networks are not only stiff but also tough, due to their complex microstructures. This stiff yet tough behavior is desirable for both medical and military applications but it is difficult to reproduce in engineering materials. While the nonlinear hyperelastic behavior of fibrous networks has been extensively studied, the understanding of toughness is still incomplete. Here, we identify a microstructure mimicking the branched bundles of a natural type I collagen network, in which partially cross-linked long fibers give rise to novel combinations of stiffness and toughness. Finite element analysis shows that the stiffness of fully cross-linked fibrous networks is amplified by increasing the fibril length and cross-link density. However, a trade-off of such stiff networks is reduced toughness. By having partially cross-linked networks with long fibrils, the networks have comparable stiffness and improved toughness as compared to the fully cross-linked networks. Further, the partially cross-linked networks avoid the formation of kinks, which cause fibril rupture during deformation. As a result, the branching allows the networks to have stiff yet tough behavior.
Resumo:
Random fibrous networks exist in both natural biological and engineering materials. While the nonlinear deformation of fibrous networks has been extensively studied, the understanding of their fracture behaviour is still incomplete. To study the fracture toughness of fibrous materials, the near-tip region is crucial because failure mechanisms such as fibril rupture occur in this region. The consideration of this region in fracture studies is, however, a difficult task because it involves microscopic mechanical responses at a small length scale. This paper extends our previous finite element analysis by incorporating the microscopic responses into a macroscopic domain by using a submodeling technique. The detailed study of microstructures at crack tips show a stochastic toughness of membranes due to the random nature of fibrous networks. Further, the sizes of crack tip region, which are sufficient to provide a reasonable prediction of fracture behaviour in a specific type of fibrous network, were presented. Future work includes improving the current linear assumption in the macroscopic models to become nonlinear.
Resumo:
Polymeric fibrous scaffolds have been considered as replacements for load-bearing soft tissues, because of their ability to mimic the microstructure of natural tissues. Poor toughness of fibrous materials results in failure, which is an issue of importance to both engineering and medical practice. The toughness of fibrous materials depends on the ability of the microstructure to develop toughening mechanisms. However, such toughening mechanisms are still not well understood, because the detailed evolution at the microscopic level is difficult to visualize. A novel and simple method was developed, namely, a sample-taping technique, to examine the detailed failure mechanisms of fibrous microstructures. This technique was compared with in situ fracture testing by scanning electron microscopy. Examination of three types of fibrous networks showed that two different failure modes occurred in fibrous scaffolds. For brittle cracking in gelatin electrospun scaffolds, the random network morphology around the crack tip remained during crack propagation. For ductile failure in polycaprolactone electrospun scaffolds and nonwoven fabrics, the random network deformed via fiber rearrangement, and a large number of fiber bundles formed across the region in front of the notch tip. These fiber bundles not only accommodated mechanical strain, but also resisted crack propagation and thus toughened the fibrous scaffolds. Such understanding provides insight for the production of fibrous materials with enhanced toughness.
Resumo:
Polymeric fibrous scaffolds have been considered as replacements for load-bearing soft tissues, because of their ability to mimic the microstructure of natural tissues. Poor toughness of fibrous materials results in failure, which is an issue of importance to both engineering and medical practice. The toughness of fibrous materials depends on the ability of the microstructure to develop toughening mechanisms. However, such toughening mechanisms are still not well understood, because the detailed evolution at the microscopic level is difficult to visualize. A novel and simple method was developed, namely, a sample-taping technique, to examine the detailed failure mechanisms of fibrous microstructures. This technique was compared with in situ fracture testing by scanning electron microscopy. Examination of three types of fibrous networks showed that two different failure modes occurred in fibrous scaffolds. For brittle cracking in gelatin electrospun scaffolds, the random network morphology around the crack tip remained during crack propagation. For ductile failure in polycaprolactone electrospun scaffolds and nonwoven fabrics, the random network deformed via fiber rearrangement, and a large number of fiber bundles formed across the region in front of the notch tip. These fiber bundles not only accommodated mechanical strain, but also resisted crack propagation and thus toughened the fibrous scaffolds. Such understanding provides insight for the production of fibrous materials with enhanced toughness. © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.