21 resultados para Fertile couples


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work examines the basic feasibility of the net-zero-balance TRU multi-recycling concept in which trivalent lanthanide fission products (Ln(III) ) are not separated from trivalent actinides (An(III)). The TRU together with Eu and Gd isotopes are recycled in a standard PWR using Combined Non-Fertile and UO2 (CONFU) assembly design. The assembly assumes a heterogeneous structure where about 20% of U02 fuel pins on the assembly periphery are replaced with Inert Matrix Fuel (IMF) pins hosting TRU, Gd, and Eu generated in the previous cycles. The 2-D neutronic analysis show potential feasibility of Ln / An recycling in PWR using CONFU assembly. Recycling of Ln reduces the fuel cycle length by about 30 effective full power days (EFPD) and TRU destruction efficiency by about 5%. Power peaking factors and reactivity feedback coefficients are close to those of CONFU assembly without Ln recycling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new combined Non Fertile and Uranium (CONFU) fuel assembly is proposed to limit the actinides that need long-term high-level waste storage from the pressurized water reactor (PWR) fuel cycle. In the CONFU assembly concept, ∼20% of the UO2 fuel pins are replaced with fertile free fuel hosting the transuranic elements (TRUs) generated in the previous cycle. This leads to a fuel cycle sustainable with respect to net TRU generation, and the amount and radiotoxicity of the nuclear waste can be significantly reduced in comparison with the conventional once-through UO2 fuel cycle. It is shown that under the constraints of acceptable power peaking limits, the CONFU assembly exhibits negative reactivity feedback coefficients comparable in values to those of the reference UO2 fuel. Feasibility of the PWR core operation and control with complete TRU recycle has been shown based on full-core three-dimensional neutronic simulation. However, gradual buildup of small amounts of Cm and Cf challenges fuel reprocessing and fabrication due to the high spontaneous fission rates of these nuclides and heat generation by some Pu, Am, and Cm isotopes. Feasibility of the processing steps becomes more attainable if the time between discharge and reprocessing is 20 yr or longer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Response of a PWR core loaded with Combined Non-Fertile and UO2 (CONFU) fuel assemblies to control rod ejection accident was evaluated. A number of core arrangements and TRU fuel compositions were considered and the results were compared with the performance of a reference all-UO2 core. The comparison was based on the results of a simple point kinetics model with thermal reactivity feedbacks and temperature dependant materials properties. The reactivity coefficients and core average kinetics parameters were obtained from the full core 3D neutronic simulations. The results show that application of the CONFU assembly concept causes only minor deviation of fuel performance characteristics in reactivity initiated accidents. This is a consequence of relatively small loadings of TRU in the CONFU assembly and therefore dominating role of conventional UO2 fuel in the neutronic performance of the core.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High conversion LWRs concepts typically rely on a heterogeneous core configuration, where fissile zones are interspersed with fertile blanket zones in order to achieve a high conversion ratio. Modeling such a heterogeneous structure of these cores represents a significant challenge to the conventional reactor analysis methods. It was recently suggested to overcome such difficulties, in particular, for the case of axially heterogeneous reduced moderation BWRs, by introducing an additional set of discontinuity factors in axial direction at the interfaces between fissile and fertile fuel assembly zones. However, none of the existing nodal diffusion core simulators have the capability of accounting for discontinuity of homogeneous nodal fluxes in axial direction since the fuel composition of conventional LWRs is much more axially uniform. In this work, we modified the nodal diffusion code DYN3D by introducing such a capability. The new version of the code was tested on a series of reduced moderation BWR cases with Th-U233 and U-Pu-MA fuel. The library of few-group homogenized cross sections and the data required for the calculation of discontinuity factors were generated using the Monte Carlo transport code Serpent. The results obtained with the modified version of DYN3D were compared with the reference Monte Carlo solutions and were found to be in good agreement. The current analysis demonstrates that high conversion LWRs can in principle be modeled using existing nodal diffusion core simulators. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The propagation of unsteady disturbances in a slowlyvarying cylindrical duct carrying mean swirling flow is investigated using a multiple-scales technique. This is applicable to turbomachinery flow behind a rotor stage when the swirl and axial velocities are of the same order. The presence of mean vorticity couples acoustic and vorticity equations which produces an eigenvalue problem that is not self-adjoint unlike that for irrotational mean flow. In order to determine the amplitude variation along the duct, an adjoint solution for the coupled system of equations is derived. The solution breaks down where a mode changes from cut on to cut off. In this region the amplitude is governed by a form of Airy's equation, and the effect of swirl is to introduce a small shift in the origin of the Airy function away from the turning-point location. The variation of axial wavenumber and amplitude along the duct is calculated. In hard-walled ducts mean swirl is shown to produce much larger amplitude variation along the duct compared with a nonswirling flow. Mean swirl also has a large effect in ducts with finite-impedance walls which differs depending on whether modes are co-rotating with the swirl or counter rotating. © 2001 by A.J. Cooper, Published by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerous experimental studies have established that cells can sense the stiffness of underlying substrates and have quantified the effect of substrate stiffness on stress fibre formation, focal adhesion area, cell traction, and cell shape. In order to capture such behaviour, the current study couples a mixed mode thermodynamic and mechanical framework that predicts focal adhesion formation and growth with a material model that predicts stress fibre formation, contractility, and dissociation in a fully 3D implementation. Simulations reveal that SF contractility plays a critical role in the substrate-dependent response of cells. Compliant substrates do not provide sufficient tension for stress fibre persistence, causing dissociation of stress fibres and lower focal adhesion formation. In contrast, cells on stiffer substrates are predicted to contain large amounts of dominant stress fibres. Different levels of cellular contractility representative of different cell phenotypes are found to alter the range of substrate stiffness that cause the most significant changes in stress fibre and focal adhesion formation. Furthermore, stress fibre and focal adhesion formation evolve as a cell spreads on a substrate and leading to the formation of bands of fibres leading from the cell periphery over the nucleus. Inhibiting the formation of FAs during cell spreading is found to limit stress fibre formation. The predictions of this mutually dependent material-interface framework are strongly supported by experimental observations of cells adhered to elastic substrates and offer insight into the inter-dependent biomechanical processes regulating stress fibre and focal adhesion formation. © 2013 Springer-Verlag Berlin Heidelberg.