34 resultados para Facility


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tomographic particle image velocimetry measurements of homogeneous isotropic turbulence that have been made in a large mixing tank facility at Cambridge are analysed in order to characterize thin highly sheared regions that have been observed. The results indicate that such regions coincide with regions of high enstrophy, dissipation and stretching. Large velocity jumps are observed across the width of these regions. The thickness of the shear layers seems to scale with the Taylor microscale, as has been suggested previously. The results discussed here concentrate on examining individual realizations rather than statistics of these regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An interactive software facility for designing multivariable control systems is described. The paper discusses the desirable characteristics of such a facility, the particular capabilities of CLADP and the numerical algorithms which lie behind them.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abrasive wear is likely to occur whenever a hard asperity or a trapped hard particle is dragged across a softer surface, and it has been estimated that this form of wear contributes to as many as half of the wear problems that are met in industry. Such damaging hard particles may be external contaminants, products of corrosion or even the debris from previous wear events. During the life of a component, damage caused by individual asperity or particle interactions builds up and, at each stage of its life, the worn surface is the result of many such superimposed wear events. The practical, quantitative prediction of wear rates depends on having both a satisfactory understanding of individual interactions and a suitable procedure for combining these when subsequent contacts are made on a surface whose topography and material properties may have been much changed Irom their initial states. The paper includes some details of an analytical model for the interaction of a representative asperity and the worn surface which can both predict the frictional force and the balance between ploughing, when material is displaced but not lost from the surface, and micromachining or cutting, when actual detachment occurs. Experiments tö !rvvéSuQ8Î8 the validity of the model have been carried out on a novel wear rig which provides very precise control over the position of the asperity and the counterface. This facility, together with that of on-board profilometry, means that it is possible to carry out wear experiments on areas of the surface whose previous deformation history is well known; in this way it is possible to follow the development of a worn surface in a controlled manner as the damage from individual wear events accumulates. Experimental data on the development of such a surface, produced by repeated parallel abrasion, are compared with the predictions of the model. © 1992 IOP Publishing Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper uses finite element (FE) analysis to examine the residual stresses generated during the TIG welding of aluminium aerospace alloys. It also looks at whether such an approach could be useful for evaluating the effectiveness of various residual stress control techniques. However, such simulations cannot be founded in a vacuum. They require accurate measurements to refine and validate them. The unique aspect of this work is that two powerful engineering techniques are combined: FE modelling and neutron diffraction. Weld trials were performed and the direct measurement of residual strain made using the ENGIN neutron diffraction strain scanning facility. The predicted results show an excellent agreement with experimental values. Finally this model is used to simulate a weld made using a "Low Stress No Distortion" (LSND) technique. Although the stress reduction predicted is only moderate, the study suggests the approach to be a quick and efficient means of optimising such techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes both the migration and dissipation of flow phenomena downstream of a transonic high-pressure turbine stage. The geometry of the HP stage exit duct considered is a swan-necked diffuser similar to those likely to be used in future engine designs. The paper contains results both from an experimental programme in a turbine test facility and from numerical predictions. Experimental data was acquired using three fast-response aerodynamic probes capable of measuring Mach number, whirl angle, pitch angle, total pressure and static pressure. The probes were used to make time-resolved area traverses at two axial locations downstream of the rotor trailing edge. A 3D time-unsteady viscous Navier-Stokes solver was used for the numerical predictions. The unsteady exit flow from a turbine stage is formed from rotordependent phenomena (such as the rotor wake, the rotor trailing edge recompression shock, the tip-leakage flow and the hub secondary flow) and vane-rotor interaction dependant phenomena. This paper describes the time-resolved behaviour and three-dimensional migration paths of both of these phenomena as they convect downstream. It is shown that the inlet flow to a downstream vane is dominated by two corotating vortices, the first caused by the rotor tip-leakage flow and the second by the rotor hub secondary flow. At the inlet plane of the downstream vane the wake is extremely weak and the radial pressure gradient is shown to have caused the majority of the high loss wake fluid to be located between the mid-height of the passage and the casing wall. The structure of the flow indicates that between a high pressure stage and a downstream vane simple two-dimensional blade row interaction does not occur. The results presented in this paper indicate that the presence of an upstream stage is likely to significantly alter the structure of the secondary flow within a downstream vane. The paper also shows that vane-rotor interaction within the upstream stage causes a 10° circumferential variation in the inlet flow angle of the 2nd stage vane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated the use of focused ion beam (FIB) etching for the fabrication of GaN-based devices. Although work has shown that conventional reactive ion etching (RIE) is in most cases appropriate for the GaN device fabrication, the direct write facility of FIB etching - a well-established technique for optical mask repair and for IC failure analysis and repair - without the requirement for depositing an etch mask is invaluable. A gallium ion beam of about 20nm diameter was used to sputter GaN material. The etching rate depends linearly on the ion dose per area with a slope of 3.5×10 -4μm3/pC. At a current of 3nA, for example, this corresponds to an etch rate of 1.05μm3/s. Good etching qualities have been achieved with a side wall roughness significantly below 0.1μm. Changes in the roughness of the etched surface plane stay below 8nm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A semi-active truck damper was developed in conjunction with a commercial shock absorber manufacturer. A linearized damper model was developed for control system design purposes. Open- and closed-loop damper force tracking control was implemented, with tests showing that an open-loop approach gave the best compromise between response speed and accuracy. A hardware-in-the-loop test facility was used to investigate performance of the damper when combined with a simulated quarter-car model. The input to the vehicle model was a set of randomly generated road profiles, each profile traversed at an appropriate speed. Modified skyhook damping tests showed a simultaneous improvement over the optimum passive case of 13 per cent in vertical body acceleration and 8 per cent in dynamic tyre forces. Full-scale vehicle tests of the damper on a heavy tri-axle trailer were carried out. Implementation of modified skyhook damping yielded a simultaneous improvement over the optimum passive case of 8 per cent in vertical body acceleration and 8 per cent in dynamic tyre forces. © IMechE 2008.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-altitude relight inside a lean-direct-injection gas-turbine combustor is investigated experimentally by highspeed imaging. Realistic operating conditions are simulated in a ground-based test facility, with two conditions being studied: one inside and one outside the combustor ignition loop. The motion of hot gases during the early stages of relight is recorded using a high-speed camera. An algorithm is developed to track the flame movement and breakup, revealing important characteristics of the flame development process, including stabilization timescales, spatial trajectories, and typical velocities of hot gas motion. Although the observed patterns of ignition failure are in broad agreement with results from laboratory-scale studies, other aspects of relight behavior are not reproduced in laboratory experiments employing simplified flow geometries and operating conditions. For example, when the spark discharge occurs, the air velocity below the igniter in a real combustor is much less strongly correlated to ignition outcome than laboratory studies would suggest. Nevertheless, later flame development and stabilization are largely controlled by the cold flowfield, implying that the location of the igniter may, in the first instance, be selected based on the combustor cold flow. Copyright © 2010.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most of the manual labor needed to create the geometric building information model (BIM) of an existing facility is spent converting raw point cloud data (PCD) to a BIM description. Automating this process would drastically reduce the modeling cost. Surface extraction from PCD is a fundamental step in this process. Compact modeling of redundant points in PCD as a set of planes leads to smaller file size and fast interactive visualization on cheap hardware. Traditional approaches for smooth surface reconstruction do not explicitly model the sparse scene structure or significantly exploit the redundancy. This paper proposes a method based on sparsity-inducing optimization to address the planar surface extraction problem. Through sparse optimization, points in PCD are segmented according to their embedded linear subspaces. Within each segmented part, plane models can be estimated. Experimental results on a typical noisy PCD demonstrate the effectiveness of the algorithm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Market competitiveness for aero engine power plant dictates that improvements in engine performance and reliability are guaranteed a priori by manufacturers. The requirement to accurately predict the life of engine components makes exacting demands of the internal air system, which must provide effective cooling over the engine duty cycle with the minimum consumption of compressor section air. Tests have been conducted at the University of Sussex using a turbine test facility which comprises a two stage turbine with an individual stage pressure ratio of 1.7:1. Main annulus air is supplied by an adapted Rolls-Royce Dart compressor at up to 440 K and 4.8 kg s-1. Cooling flow rates ranging from 0.71 to 1.46 Cw, ent, a disc entrainment parameter, have been used to allow ingress or egress dominated stator well flow conditions. The mechanical design of the test section allows internal cooling geometry to be rapidly re-configured, allowing the effect of jet momentum and coolant trajectory to be investigated. An important facet to this investigation is the use of CFD to model and analyse the flow structures associated with the cavity conditions tested, as well as to inform the design of cooling path geometry. This paper reports on the effectiveness of stator well coolant flow rate and delivery configurations using experimental data and also CFD analysis to better quantify the effect of stator well flow distribution on component temperatures. Copyright © 2011 by Rolls-Royce plc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gas turbine engine performance requires effective and reliable internal cooling over the duty cycle of the engine. Life predictions for rotating components subject to the main gas path temperatures are vital. This demands increased precision in the specification of the internal air system flows which provide turbine stator well cooling and sealing. This in turn requires detailed knowledge of the flow rates through rim seals and interstage labyrinth seals. Knowledge of seal movement and clearances at operating temperatures is of great importance when prescribing these flows. A test facility has been developed at the University of Sussex, incorporating a two stage turbine rated at 400 kW with an individual stage pressure ratio of 1.7:1. The mechanical design of the test facility allows internal cooling geometry to be rapidly re-configured, while cooling flow rates of between 0.71 CW, ENT and 1.46 C W, ENT, may be set to allow ingress or egress dominated cavity flows. The main annulus and cavity conditions correspond to in cavity rotational Reynolds numbers of 1.71×106< Reφ <1.93×106. Displacement sensors have been used to establish hot running seal clearances over a range of stator well flow conditions, allowing realistic flow rates to be calculated. Additionally, gas seeding techniques have been developed, where stator well and main annulus flow interactions are evaluated by measuring changes in gas concentration. Experiments have been performed which allow rim seal and re-ingestion flows to be quantified. It will be shown that this work develops the measurement of stator well cooling flows and provides data suitable for the validation of improved thermo-mechanical and CFD codes, beneficial to the engine design process. Copyright © 2011 by Rolls-Royce plc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new program of K-isomer research has been initiated with the 8π spectrometer sited at the ISAC facility of TRIUMF. We discuss in this paper the identification of a new 2.3 s isomer in 174Tm and its implications. © Società Italiana di Fisica / Springer-Verlag 2005.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Both MgB2 and (RE)BCO bulk materials can provide a highly compact source of magnetic field when magnetized. The properties of these materials when magnetized by a pulsed field are potentially useful for a number of applications, including magnetic levitation. This paper reports on pulsed field magnetization of single 25 mm diameter (RE)BCO bulks using a recently constructed pulse magnetization facility, which allows an automated sequence of pulses to be delivered. The facility allows measurement of force between a magnetized (RE)BCO bulk and a bulk MgB2 hollow cylinder, which is field cooled in the field of the magnetized (RE)BCO bulk. Hysteresis cycling behavior for small displacement is also measured to extract the stiffness value. The levitation forces up to 500 N were obtained, the highest ever measured between two bulks and proves the concept of a bulk-bulk superconducting bearing design. © 2002-2011 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Energy performance labelling and certification have been introduced widely to address market failures affecting the uptake of energy efficient technologies, by providing a signal to support decision making during contracting processes. The UK has recently introduced the Energy Performance Certificate (EPC) as a signal of building energy performance. The aims of this article are: to evaluate how valid EPC's are signals of occupier satisfaction with office facilities; and to understand whether occupant attitudes towards environmental issues have affected commercial office rental values. This was achieved by surveying occupant satisfaction with their workplaces holistically using a novel multi-item rating scale which gathered 204 responses. Responses to this satisfaction scale were matched with the corresponding EPC and rental value of occupier's workplaces. The satisfaction scale was found to be both a reliable and valid measure. The analysis found that EPC asset rating correlates significantly with occupant satisfaction with all facility attributes. Therefore, EPC ratings may be considered valid signals of overall facility satisfaction within the survey sample. Rental value was found to correlate significantly only with facility aesthetics. No evidence suggests rental value has been affected by occupants' perceptions towards the environmental impact of facilities. © 2013 The Authors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding combustion instabilities requires accurate measurements of the acoustic velocity perturbation into injectors. This is often accomplished via the use of the two microphone technique, as this only requires two pressure transducers. However, measurements of the actual velocities emerging from the injectors are not often taken, leaving questions regarding the assumptions about the acoustic velocity. A comparison of velocity measured at downstream of the injector with that of two-microphone technique can show the accuracy and limitations of two-microphone technique. In this paper, velocity measurements are taken using both particle image velocimetry (PIV) and the two-microphone technique in a high pressure facility designed for aeroengine injector measurements. The flow is excited using an area modulation device installed on the choked end of the combustion chamber, with PIV measurements enabled by optical access downstream of the injector through a quartz tube and windows. Acoustic velocity perturbations at the injector are determined by considering the Fourier transformed pressure fluctuations for two microphones installed at a known distance upstream of the injector. PIV measurements are realized by seeding the air flow with micrometric water particles under 2.5 bar pressure at ambient temperature. Phase locked velocity fields are realized by synchronizing the acquisition of PIV images with the revolution of the acoustic modulator using the pressure signal measured at the face of injector. The mean velocity fluctuation is calculated as the difference between maximum and minimum velocities, normalized by the mean velocity of the unforced case. Those values are compared with the peak-to-peak velocity fluctuation amplitude calculated by the two-microphone technique. Although the ranges of velocity fluctuations for both techniques are similar, the variation of fluctuation with forcing frequencies diverges significantly with frequency. The differences can be attributed to several limitations associated with of both techniques, such as the quality of the signal, the signal/noise ratio, the accuracy of PIV measurements and the assumption of isentropic flow of the particle velocity from the plenum through the injector. We conclude that two-microphone methods can be used as a reference value for the velocity fluctuation in low order applications such as flame transfer functions, but not for drawing conclusions regarding the absolute velocity fluctuations in the injector. Copyright © 2013 by ASME.