33 resultados para FILM THICKNESS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Seeded zone-melt recrystallization using a dual electron beam system has been performed on silicon-on-insulator material, which was prepared with single-crystal silicon filling of the seed windows by selective epitaxial growth. The crystal quality has been assessed by a variety of microscopic techniques, and it is shown that single-crystal films 0.5-1.0 μm thick over 1.0 μm of isolating oxide may be prepared by this method. These films have considerably less lateral variation in thickness than standard material, in which the windows are not so filled. The filling method is suitable for both single- and multiple-layer silicon-on-insulator, and gives the advantages of excellent layer uniformity after recrystallization and improved planarity of the whole chip structure. Experiments using various amounts of seed window filling have shown that the lateral variations of silicon film thickness seen in unplanarized material are due to stress relief in the cap oxide when the silicon film is molten, rather than the effect previously postulated in which they were assumed to be due to the contraction of silicon on melting.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A model of lubricated cold strip rolling (1, 2) is extended to the thin foil regime. The model considers the evolution of asperity geometry and lubricant pressure through the bite, treating the strip using a conventional slab model. The elastic deflections of the rolls are coupled into the problem using an elastic finite element model. Friction between the roll and the asperities on the strip is modelled using the Coulomb and Tresca friction factor approaches. The shear stress in the Coulomb friction model is limited to the shear yield stress of the strip. A novel modification to these standard friction laws is used to mimic slipping friction in the reduction regions and sticking friction in a central neutral zone. The model is able to reproduce the sticking and slipping zones predicted by Fleck et al. (3). The variation of rolling load, lubricant film thickness and asperity contact area with rolling speed is examined, for conditions typical of rolling aluminium foil from a thickness of 50 to 25 μm. T he contact area and hence friction rises as the speed drops, leading to a large increase in rolling load. This increase is considerably more marked using Coulomb friction as compared with the friction factor approach. Forward slip increases markedly as the speed falls and a significant sticking region develops.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A mechanical model of cold rolling of foil is coupled with a sophisticated tribological model. The tribological model treats the "mixed" lubrication regime of practical interest, in which there is "real" contact between the roll and strip as well as pressurized oil between the surfaces. The variation of oil film thickness and contact ratio in the bite is found by considering flattening of asperities on the foil and the build-up of hydrodynamic pressure through the bite. The boundary friction coefficient for the contact areas is taken from strip drawing tests under similar tribological conditions. Theoretical results confirm that roll load and forward slip decrease with increasing rolling speed due to the decrease in contact ratio and friction. The predictions of the model are verified using mill trials under industrial conditions. For both thin strip and foil, the load predicted by the model has reasonable agreement with the measurements. For rolling of foil, forward slip is overestimated. This is greatly improved if a variation of friction through the bite is considered.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

DLC films with different thicknesses (from 100 nm to 1.9 μm) were deposited using sputtering of graphite target in pure argon atmosphere without substrate heating. Film microstructures (sp2/sp3 ratio) and mechanical properties (modulus, hardness, stress) were characterized as a function of film thickness. A thin layer of aluminum about 60 nm was deposited on the DLC film surface. Laser micromachining of Al/DLC layer was performed to form microcantilever structures, which were released using a reactive ion etching system with SF6 plasma. Due to the intrinsic stress in DLC films and bimorph Al/DLC structure, the microcantilevers bent up with different curvatures. For DLC film of 100 nm thick, the cantilever even formed microtubes. The relationship between the bimorph beam bending and DLC film properties (such as stress, modulus, etc.) were discussed in details. © 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work explored the use of industrial drop-on-demand inkjet printing for masking steel surfaces on engineering components, followed by chemical etching, to produce patterned surfaces. A solvent-based ink was printed on to mild steel samples and the influences of substrate topography and substrate temperature were investigated. Contact angle measurements were used to assess wettability. Regular patterns of circular spots (∼60 /on diameter) and more complex mask patterns were printed. Variation of the substrate temperature had negligible effect on the final size of the printed drops or on the resolution achieved. Colored optical interference fringes were observed on the dried ink deposits and correlated with film thickness measurements by whitelight interferometry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A friction test rig has been developed to carry out repeated sliding friction tests for premium tubular connections. The test rig enables accurate measurement of friction in various contact regimes which are relevant to the threaded connections between tubular components. Higher load tests can simulate the contact in metal-to-metal seals under very high contact pressures by using perpendicular pin-on-pin tests. The contact in the thread loading flank under intermediate pressures can be simulated by using larger radius coupon-on-coupon tests. The measured coefficient of friction is well correlated with a lubrication parameter combining lubricant film thickness and initial surface roughness. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The tensile response of single crystal films passivated on two sides is analysed using climb enabled discrete dislocation plasticity. Plastic deformation is modelled through the motion of edge dislocations in an elastic solid with a lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and dislocation annihilation incorporated through a set of constitutive rules. The dislocation motion in the films is by glide-only or by climb-assisted glide whereas in the surface passivation layers dislocation motion occurs by glide-only and penalized by a friction stress. For realistic values of the friction stress, the size dependence of the flow strength of the oxidised films was mainly a geometrical effect resulting from the fact that the ratio of the oxide layer thickness to film thickness increases with decreasing film thickness. However, if the passivation layer was modelled as impenetrable, i.e. an infinite friction stress, the plastic hardening rate of the films increases with decreasing film thickness even for geometrically self-similar specimens. This size dependence is an intrinsic material size effect that occurs because the dislocation pile-up lengths become on the order of the film thickness. Counter-intuitively, the films have a higher flow strength when dislocation motion is driven by climb-assisted glide compared to the case when dislocation motion is glide-only. This occurs because dislocation climb breaks up the dislocation pile-ups that aid dislocations to penetrate the passivation layers. The results also show that the Bauschinger effect in passivated thin films is stronger when dislocation motion is climb-assisted compared to films wherein dislocation motion is by glide-only. © 2012 Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Carbon coatings of thickness down to 2 nanometers are needed to increase the storage density in magnetic hard disks and reach the 100 Gbit/in2 target. Methods to measure the properties of these ultrathin hard films still have to be developed. We show that combining Surface Brillouin Scattering (SBS) andX-ray reflectivity measurements the elastic constants of such films are accessible. Tetrahedral amorphous carbofilms of thickness down to about 2 nm were deposited on Si by an S bend filtered cathodic vacuum arc, achieving a continuous coverage on large areas free of macroparticles. Film thickness and mass density are measured by X-ray reflectivity: densities above 3 g/cm3 are found, indicating a significant sp3 content. The dispersion relations of surface acoustic waves are measured by SBS. We show that for thicknesses above ∼4 nm these waves can be described by a continuum elastic model based on a single homogeneous equivalent film. The elastic constants can then be obtained by fitting the dispersion relations, computed for given film properties, to the measured dispersion relations. For thicknesses of 3 nm or less qualitative differences among films are well measurable, but quantitative results are less reliable. We have thus shown that we can grow and characterise nanometer size tetrahedral amorphous carbon film, which maintain their high density and peculiar mechanical properties down to around 4 nm thickness, satisfying the requirements set for the hard disk coating material.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tantalum-oxide thin films are shown to catalyse single- and multi-walled carbon nanotube growth by chemical vapour deposition. A low film thickness, the nature of the support material (best results with SiO2) and an atmospheric process gas pressure are of key importance for successful nanotube nucleation. Strong material interactions, such as silicide formation, inhibit nanotube growth. In situ X-ray photoelectron spectroscopy indicates that no catalyst reduction to Ta-metal or Ta-carbide occurs during our nanotube growth conditions and that the catalytically active phase is the Ta-oxide phase. Such a reduction-free oxide catalyst can be technologically advantageous. © 2013 The Royal Society of Chemistry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We analyze the relationship between the average wall number (N) and the diameter (d) for carbon nanotubes (CNTs) grown by chemical vapour deposition. It is found that N depends linearly on d for diameters in the range of 2.5-10 nm, while single wall nanotubes predominate for diameters under about 2.1 nm. The linear relationship is found to depend somewhat on the growth conditions. It is also verified that the mean diameter depends on the diameter of the originating catalyst nanoparticle, and thus on the initial catalyst thickness where a thin film catalyst is used. This simplifies the characterisation of CNTs by electron microscopy. We also find a linear relationship between nanotube diameter and initial catalyst film thickness. © 2013 AIP Publishing LLC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biodegradable polymers can be applied to a variety of implants for controlled and local drug delivery. The aim of this study is to develop a biodegradable and nanoporous polymeric platform for a wide spectrum of drug-eluting implants with special focus on stent-coating applications. It was synthesized by poly(DL-lactide-co-glycolide) (PLGA 65:35, PLGA 75:25) and polycaprolactone (PCL) in a multilayer configuration by means of a spin-coating technique. The antiplatelet drug dipyridamole was loaded into the surface nanopores of the platform. Surface characterization was made by atomic force microscopy (AFM) and spectroscopic ellipsometry (SE). Platelet adhesion and drug-release kinetic studies were then carried out. The study revealed that the multilayer films are highly nanoporous, whereas the single layers of PLGA are atomically smooth and spherulites are formed in PCL. Their nanoporosity (pore diameter, depth, density, surface roughness) can be tailored by tuning the growth parameters (eg, spinning speed, polymer concentration), essential for drug-delivery performance. The origin of pore formation may be attributed to the phase separation of polymer blends via the spinodal decomposition mechanism. SE studies revealed the structural characteristics, film thickness, and optical properties even of the single layers in the triple-layer construct, providing substantial information for drug loading and complement AFM findings. Platelet adhesion studies showed that the dipyridamole-loaded coatings inhibit platelet aggregation that is a prerequisite for clotting. Finally, the films exhibited sustained release profiles of dipyridamole over 70 days. These results indicate that the current multilayer phase therapeutic approach constitutes an effective drug-delivery platform for drug-eluting implants and especially for cardiovascular stent applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The properties of layered inorganic semiconductors can be manipulated by the insertion of foreign molecular species via a process known as intercalation. In the present study, we investigate the phenomenon of organic moiety (R-NH3I) intercalation in layered metal-halide (PbI2)-based inorganic semiconductors, leading to the formation of inorganic-organic (IO) perovskites [(R-NH3)2PbI4]. During this intercalation strong resonant exciton optical transitions are created, enabling study of the dynamics of this process. Simultaneous in situ photoluminescence (PL) and transmission measurements are used to track the structural and exciton evolution. On the basis of the experimental observations, a model is proposed which explains the process of IO perovskite formation during intercalation of the organic moiety through the inorganic semiconductor layers. The interplay between precursor film thickness and organic solution concentration/solvent highlights the role of van der Waals interactions between the layers, as well as the need for maintaining stoichiometry during intercalation. Nucleation and growth occurring during intercalation matches a Johnson-Mehl-Avrami-Kolmogorov model, with results fitting both ideal and nonideal cases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The magnetic properties of melt-processed YBa2Cu3O7-δ thick films have been measured and correlated with features in the microstructure at 4.2 and 77 K for film thicknesses between 50 and 140 μm. A qualitative model for the volume magnetization of the films at 4.2 K is proposed in terms of the individual contributions from intra H-S grain, inter H-S grain and granular Jc components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A short channel vertical thin film transistor (VTFT) with 30 nm SiN x gate dielectric is reported for low voltage, high-resolution active matrix applications. The device demonstrates an ON/OFF current ratio as high as 10 9, leakage current in the fA range, and a sub-threshold slope steeper than 0.23 V/dec exhibiting a marked improvement with scaling of the gate dielectric thickness. © 2011 American Institute of Physics.