44 resultados para Euler, Leonhard, 1707-1783
Resumo:
The paper is devoted to extending the new efficient frequency-domain method of adjoint Green's function calculation to curvilinear multi-block RANS domains for middle and farfield sound computations. Numerical details of the method such as grids, boundary conditions and convergence acceleration are discussed. Two acoustic source models are considered in conjunction with the method and acoustic modelling results are presented for a benchmark low-Reynolds-number jet case.
Resumo:
Existing Monte Carlo burnup codes use various schemes to solve the coupled criticality and burnup equations. Previous studies have shown that the coupling schemes of the existing Monte Carlo burnup codes can be numerically unstable. Here we develop the Stochastic Implicit Euler method - a stable and efficient new coupling scheme. The implicit solution is obtained by the stochastic approximation at each time step. Our test calculations demonstrate that the Stochastic Implicit Euler method can provide an accurate solution to problems where the methods in the existing Monte Carlo burnup codes fail. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
In the present paper we consider second order compact upwind schemes with a space split time derivative (CABARET) applied to one-dimensional compressible gas flows. As opposed to the conventional approach associated with incorporating adjacent space cells we use information from adjacent time layer to improve the solution accuracy. Taking the first order Roe scheme as the basis we develop a few higher (i.e. second within regions of smooth solutions) order accurate difference schemes. One of them (CABARET3) is formulated in a two-time-layer form, which makes it most simple and robust. Supersonic and subsonic shock-tube tests are used to compare the new schemes with several well-known second-order TVD schemes. In particular, it is shown that CABARET3 is notably more accurate than the standard second-order Roe scheme with MUSCL flux splitting.
Resumo:
The paper deals with the static analysis of pre-damaged Euler-Bernoulli beams with any number of unilateral cracks and subjected to tensile or compression forces combined with arbitrary transverse loads. The mathematical representation of cracks with a bilateral behaviour (i.e. always open) via Dirac delta functions is extended by introducing a convenient switching variable, which allows each crack to be open or closed depending on the sign of the axial strain at the crack centre. The proposed model leads to analytical solutions, which depend on four integration constants (to be computed by enforcing the boundary conditions) along with the Boolean switching variables associated with the cracks (whose role is to turn on and off the additional flexibility due to the presence of the cracks). An efficient computational procedure is also presented and numerically validated. For this purpose, the proposed approach is applied to two pre-damaged beams, with different damage and loading conditions, and the results so obtained are compared against those given by a standard finite element code (in which the correct opening of the cracks is pre-assigned), always showing a perfect agreement. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
We present results on the stability of compressible inviscid swirling flows in an annular duct. Such flows are present in aeroengines, for example in the by-pass duct, and there are also similar flows in many aeroacoustic or aeronautical applications. The linearised Euler equations have a ('critical layer') singularity associated with pure convection of the unsteady disturbance by the mean flow, and we focus our attention on this region of the spectrum. By considering the critical layer singularity, we identify the continuous spectrum of the problem and describe how it contributes to the unsteady field. We find a very generic family of instability modes near to the continuous spectrum, whose eigenvalue wavenumbers form an infinite set and accumulate to a point in the complex plane. We study this accumulation process asymptotically, and find conditions on the flow to support such instabilities. It is also found that the continuous spectrum can cause a new type of instability, leading to algebraic growth with an exponent determined by the mean flow, given in the analysis. The exponent of algebraic growth can be arbitrarily large. Numerical demonstrations of the continuous spectrum instability, and also the modal instabilities are presented.
Resumo:
This paper presents a pseudo-time-step method to calculate a (vector) Green function for the adjoint linearised Euler equations as a scattering problem in the frequency domain, for use as a jet-noise propagation prediction tool. A method of selecting the acoustics-related solution in a truncated spatial domain while suppressing any possible shear-layer-type instability is presented. Numerical tests for 3-D axisymmetrical parallel mean flows against semi-analytical reference solutions indicate that the new iterative algorithm is capable of producing accurate solutions with modest computational requirements.
Resumo:
The scattering of sound from a point source by a Rankine vortex is investigated numerically by solving the Euler equations with the novel high-resolution CABARET method. For several Mach numbers of the vortex, the time-average amplitudes of the scattered field obtained from the numerical modeling are compared with the theoretical scaling laws' predictions. Copyright © 2009 by Sergey Karabasov.
Resumo:
The ability to separate acoustically radiating and non-radiating components in fluid flow is desirable to identify the true sources of aerodynamic sound, which can be expressed in terms of the non-radiating flow dynamics. These non-radiating components are obtained by filtering the flow field. Two linear filtering strategies are investigated: one is based on a differential operator, the other employs convolution operations. Convolution filters are found to be superior at separating radiating and non-radiating components. Their ability to decompose the flow into non-radiating and radiating components is demonstrated on two different flows: one satisfying the linearized Euler and the other the Navier-Stokes equations. In the latter case, the corresponding sound sources are computed. These sources provide good insight into the sound generation process. For source localization, they are found to be superior to the commonly used sound sources computed using the steady part of the flow. Copyright © 2009 by S. Sinayoko, A. Agarwal, Z. Hu.
Resumo:
The physical sources of sound are expressed in terms of the non-radiating part of the flow. The non-radiating part of the flow can be obtained from convolution filtering, as we demonstrate numerically by using an axi-symmetric jet satisfying the Navier-Stokes equations. Based on the frequency spectrum of the source, we show that the sound sources exhibit more physical behaviour than sound sources based on acoustic analogies. To validate the sources of sound, one needs to let them radiate within the non-radiating flow field. However, our results suggest that the traditional Euler operator linearized about the time-averaged part of the flow should be sufficient to compute the sound field. © 2010 Published by Elsevier Ltd.