39 resultados para Estimateur de Bayes
Resumo:
We consider the general problem of constructing nonparametric Bayesian models on infinite-dimensional random objects, such as functions, infinite graphs or infinite permutations. The problem has generated much interest in machine learning, where it is treated heuristically, but has not been studied in full generality in non-parametric Bayesian statistics, which tends to focus on models over probability distributions. Our approach applies a standard tool of stochastic process theory, the construction of stochastic processes from their finite-dimensional marginal distributions. The main contribution of the paper is a generalization of the classic Kolmogorov extension theorem to conditional probabilities. This extension allows a rigorous construction of nonparametric Bayesian models from systems of finite-dimensional, parametric Bayes equations. Using this approach, we show (i) how existence of a conjugate posterior for the nonparametric model can be guaranteed by choosing conjugate finite-dimensional models in the construction, (ii) how the mapping to the posterior parameters of the nonparametric model can be explicitly determined, and (iii) that the construction of conjugate models in essence requires the finite-dimensional models to be in the exponential family. As an application of our constructive framework, we derive a model on infinite permutations, the nonparametric Bayesian analogue of a model recently proposed for the analysis of rank data.
Discriminative language model adaptation for Mandarin broadcast speech transcription and translation
Resumo:
This paper investigates unsupervised test-time adaptation of language models (LM) using discriminative methods for a Mandarin broadcast speech transcription and translation task. A standard approach to adapt interpolated language models to is to optimize the component weights by minimizing the perplexity on supervision data. This is a widely made approximation for language modeling in automatic speech recognition (ASR) systems. For speech translation tasks, it is unclear whether a strong correlation still exists between perplexity and various forms of error cost functions in recognition and translation stages. The proposed minimum Bayes risk (MBR) based approach provides a flexible framework for unsupervised LM adaptation. It generalizes to a variety of forms of recognition and translation error metrics. LM adaptation is performed at the audio document level using either the character error rate (CER), or translation edit rate (TER) as the cost function. An efficient parameter estimation scheme using the extended Baum-Welch (EBW) algorithm is proposed. Experimental results on a state-of-the-art speech recognition and translation system are presented. The MBR adapted language models gave the best recognition and translation performance and reduced the TER score by up to 0.54% absolute. © 2007 IEEE.
Resumo:
There is a widespread recognition of the need for better information sharing and provision to improve the viability of end-of-life (EOL) product recovery operations. The emergence of automated data capture and sharing technologies such as RFID, sensors and networked databases has enhanced the ability to make product information; available to recoverers, which will help them make better decisions regarding the choice of recovery option for EOL products. However, these technologies come with a cost attached to it, and hence the question 'what is its value?' is critical. This paper presents a probabilistic approach to model product recovery decisions and extends the concept of Bayes' factor for quantifying the impact of product information on the effectiveness of these decisions. Further, we provide a quantitative examination of the factors that influence the value of product information, this value depends on three factors: (i) penalties for Type I and Type II errors of judgement regarding product quality; (ii) prevalent uncertainty regarding product quality and (iii) the strength of the information to support/contradict the belief. Furthermore, we show that information is not valuable under all circumstances and derive conditions for achieving a positive value of information. © 2010 Taylor & Francis.