143 resultados para Er-doped silicon


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report passive mode-locking of an Er-doped fiber laser using carbon nanotubes deposited on the facet of a right-angle optical waveguide. © 2013 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Advanced waveguide lasers, operating both in continuous wave and pulsed regimes, have been realized in an active phosphate glass by direct writing with femtosecond laser pulses. Stable single mode operation was obtained; the laser provided more than 50 m W in single longitudinal and transverse mode operation with 21% slope efficiency. Furthermore, by combining a high gain waveguide and an innovated fiber-pigtailed saturable absorber based on carbon nanotubes, a mode-locked ring laser providing transform limited 1.6 ps pulses was demonstrated. © 2007 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mode-locked and single-longitudinal-mode waveguide lasers, manufactured by femtosecond laser writing in Er-Yb-doped phosphate glasses, are presented. Transform-limited 1.6-ps pulses and a cw output power exceeding 50 mW have been obtained in the two regimes. © 2007 Optical Society of America.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Photon cutting with efficiencies up to 400% is demonstrated in Erx Y2-x Si2 O7 films grown on Si and its concentration dependence is analyzed. The cutting is the result of cross-energy-transfer processes occurring within a single rare earth (Er3+) acting as both sensitizer and activator. Similarities with upconversion are revealed and possible applications in solar cells are discussed. © 2010 The American Physical Society.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we report about the electrical properties of La 0.7Ca0.3MnO3 compounds substituted by copper on the manganese site and/or deliberately contaminated by SiO2 in the reactant mixture. Several phenomena have been observed and discussed. SiO2 addition leads to the formation of an apatite-like secondary phase that affects the electrical conduction through the percolation of the charge carriers. On the other hand, depending on the relative amounts of copper and silicon, the temperature dependence of the electrical resistivity can be noticeably modified: our results enable us to compare the effects of crystallographic vacancies on the A and B sites of the perovskite with the influence of the copper ions substituted on the manganese site. The most original result occurs for the compounds with a small ratio Si/Cu, which display double-peaked resistivity vs. temperature curves. © 2003 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mode-locked and single-longitudinal-mode waveguide lasers, manufactured by femtosecond laser writing in Er-Yb-doped phosphate glasses, are presented. Transform-limited 1.6-ps pulses and a cw output power exceeding 50 mW have been obtained in the two regimes. © 2007 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-hydrogenated tetrahedral amorphous carbon (ta-C) has shown superior field emission characteristics. The understanding of the emission mechanism has been hindered by the lack of any directly measured data on the band offsets between ta-C and Si. In this paper results from direct in situ X-ray photoemission spectroscopy (XPS) measurements of the band-offset between ta-C and Si are reported. The measurements were carried out using a filtered cathodic vacuum arc (FCVA) deposition system attached directly to an ultra-high vacuum (UHV) XPS chamber via a load lock chamber. Repeated XPS measurements were carried out after monolayer depositions on in situ cleaned Si substrates. The total film thickness for each set of measurements was approximately 5 nm. Analysis of the data from undoped ta-C on n and p Si show the unexpected result that the conduction band barrier between Si and ta-C remains around 1.0 eV, but that the valence band barrier changes from 0.7 to 0.0 eV. The band line up derived from these barriers suggests that the Fermi level in the ta-C lies 0.3 eV above the valence band on both p and n+Si. The heterojunction barriers when ta-C is doped with nitrogen are also presented. The implications of the heterojunction energy barrier heights for field emission from ta-C are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There has been a growing interest in hydrogenated silicon carbide films (SiC:H) prepared using the electron cyclotron resonance-chemical vapour deposition (ECR-CVD) technique. Using the ECR-CVD technique, SiC:H films have been prepared from a mixture of methane, silane and hydrogen, with phosphine as the doping gas. The effects of changes in the microwave power (from 150 to 900 W) on the film properties were investigated in a series of phosphorus-doped SiC:H films. In particular, the changes in the deposition rate, optical bandgap, activation energy and conductivity were investigated in conjunction with results from Raman scattering and Fourier transform infra-red (FTIR) analysis. It was found that increase in the microwave power has the effect of enhancing the formation of the silicon microcrystalline phase in the amorphous matrix of the SiC:H films. This occurs in correspondence to a rapid increase in the conductivity and a reduction in the activation energy, both of which exhibit small variations in samples deposited at microwave powers exceeding 500 W. Analysis of IR absorption results suggests that hydrogen is bonded to silicon in the Si-H stretching mode and to carbon in the sp3 CHn rocking/wagging and bending mode in films deposited at higher microwave powers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ammonia (NH 3) plasma pretreatment is used to form and temporarily reduce the mobility of Ni, Co, or Fe nanoparticles on boron-doped mono- and poly-crystalline silicon. X-ray photoemission spectroscopy proves that NH 3 plasma nitrides the Si supports during nanoparticle formation which prevents excessive nanoparticle sintering/diffusion into the bulk of Si during carbon nanotube growth by chemical vapour deposition. The nitridation of Si thus leads to nanotube vertical alignment and the growth of nanotube forests by root growth mechanism. © 2012 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stoichiometric Er silicate thin films, monosilicate (Er2SiO 5) and disilicate (Er2Si2O7), have been grown on c-Si substrates by rf magnetron sputtering. The influence of annealing temperature in the range 1000-1200 °C in oxidizing ambient (O 2) on the structural and optical properties has been studied. In spite of the known reactivity of rare earth silicates towards silicon, Rutherford backscattering spectrometry shows that undesired chemical reactions between the film and the substrate can be strongly limited by using rapid thermal treatments. Monosilicate and disilicate films crystallize at 1100 and 1200 °C, respectively, as shown by x-ray diffraction analysis; the crystalline structures have been identified in both cases. Moreover, photoluminescence (PL) measurements have demonstrated that the highest PL intensity is obtained for Er2Si2O7 film annealed at 1200 °C. In fact, this treatment allows us to reduce the defect density in the film, in particular by saturating oxygen vacancies, as also confirmed by the increase of the lifetime of the PL signal. © 2008 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the key technologies to evolve in the displays market in recent years is liquid crystal over silicon (LCOS) microdisplays. Traditional LCOS devices and applications such as rear projection televisions, have been based on intensity modulation electro-optical effects, however, recent developments have shown that multi-level phase modulation from these devices is extremely sought after for applications such as holographic projectors, optical correlators and adaptive optics. Here, we propose alternative device geometry based on the flexoelectric-optic effect in a chiral nematic liquid crystal. This device is capable of delivering a multilevel phase shift at response times less than 100 microsec which has been verified by phase shift interferometry using an LCOS test device. The flexoelectric on silicon device, due to its remarkable characteristics, enables the next generation of holographic devices to be realized.