112 resultados para Environmental remediation
Resumo:
The sustainable remediation concept, aimed at maximizing the net environmental, social, and economic benefits in contaminated site remediation, is being increasingly recognized by industry, governments, and academia. However, there is limited understanding of actual sustainable behaviour being adopted and the determinants of such sustainable behaviour. The present study identified 27 sustainable practices in remediation. An online questionnaire survey was used to rank and compare them in the US (n=112) and the UK (n=54). The study also rated ten promoting factors, nine barriers, and 17 types of stakeholders' influences. Subsequently, factor analysis and general linear models were used to determine the effects of internal characteristics (i.e. country, organizational characteristics, professional role, personal experience and belief) and external forces (i.e. promoting factors, barriers, and stakeholder influences). It was found that US and UK practitioners adopted many sustainable practices to similar extents. Both US and UK practitioners perceived the most effectively adopted sustainable practices to be reducing the risk to site workers, protecting groundwater and surface water, and reducing the risk to the local community. Comparing the two countries, we found that the US adopted innovative in-situ remediation more effectively; while the UK adopted reuse, recycling, and minimizing material usage more effectively. As for the overall determinants of sustainable remediation, the country of origin was found not to be a significant determinant. Instead, organizational policy was found to be the most important internal characteristic. It had a significant positive effect on reducing distant environmental impact, sustainable resource usage, and reducing remediation cost and time (p<0.01). Customer competitive pressure was found to be the most extensively significant external force. In comparison, perceived stakeholder influence, especially that of primary stakeholders (site owner, regulator, and primary consultant), did not appear to have as extensive a correlation with the adoption of sustainability as one would expect.
Resumo:
Life cycle assessment has been used to investigate the environmental and economic sustainability of a potential operation in the UK in which bioethanol is produced from the hydrolysis and subsequent fermentation of coppice willow. If the willow were grown on idle arable land in the UK, or, indeed, in Eastern Europe and imported as wood chips into the UK, it was found that savings of greenhouse gas emissions of 70-90%, when compared to fossil-derived gasoline on an energy basis, would be possible. The process would be energetically self-sufficient, as the co-products, e.g. lignin and unfermented sugars, could be used to produce the process heat and electricity, with surplus electricity being exported to the National Grid. Despite the environmental benefits, the economic viability is doubtful at present. However, the cost of production could be reduced significantly if the willow were altered by breeding to improve its suitability for hydrolysis and fermentation.
Resumo:
The objective of this study was to compare the life-cycle environmental impacts of changed production structures for two consumer goods (high-density polyethylene (HDPE) shopping bags and beds) in Jamaica. A scenario technique was used to construct three alternative production structures for each product; each scenario reflecting an increase in local production in Jamaica which depended on an increased supply of input materials which may be sourced: (1) externally from overseas suppliers, (2) from post-consumer recycling, and (3) locally on the island of Jamaica. These three constructed scenarios were then compared to the existing supply chain or reference scenarios of the products. The results showed that for both case products the recycling scenario was most preferable for localising production, resulting in the lowest environmental impact. This was because the production of raw materials accounted for the largest effect on total environmental impact. As such, the most immediate environmental improvements were realised by lowering the production of virgin materials. © 2007 Elsevier Ltd. All rights reserved.
Resumo:
Contaminant behaviour in soils and fractured rock is very complex, not least because of the heterogeneity of the subsurface environment. For non-aqueous phase liquids (NAPLs), a liquid density contrast and interfacial tension between the contaminant and interstitial fluid adds to the complexity of behaviour, increasing the difficulty of predicting NAPL behaviour in the subsurface. This paper outlines the need for physical model tests that can improve fundamental understanding of NAPL behaviour in the subsurface, enhance risk assessments of NAPL contaminated sites, reduce uncertainty associated with NAPL source remediation and improve current technologies for NAPL plume remediation. Four case histories are presented to illustrate physical modelling approaches that have addressed problems associated with NAPL transport, remediation and source zone characterization. © 2006 Taylor & Francis Group, London.