19 resultados para Energy dispersive x-ray


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hip fracture is the leading cause of acute orthopaedic hospital admission amongst the elderly, with around a third of patients not surviving one year post-fracture. Although various preventative therapies are available, patient selection is difficult. The current state-of-the-art risk assessment tool (FRAX) ignores focal structural defects, such as cortical bone thinning, a critical component in characterizing hip fragility. Cortical thickness can be measured using CT, but this is expensive and involves a significant radiation dose. Instead, Dual-Energy X-ray Absorptiometry (DXA) is currently the preferred imaging modality for assessing hip fracture risk and is used routinely in clinical practice. Our ambition is to develop a tool to measure cortical thickness using multi-view DXA instead of CT. In this initial study, we work with digitally reconstructed radiographs (DRRs) derived from CT data as a surrogate for DXA scans: this enables us to compare directly the thickness estimates with the gold standard CT results. Our approach involves a model-based femoral shape reconstruction followed by a data-driven algorithm to extract numerous cortical thickness point estimates. In a series of experiments on the shaft and trochanteric regions of 48 proximal femurs, we validated our algorithm and established its performance limits using 20 views in the range 0°-171°: estimation errors were 0:19 ± 0:53mm (mean +/- one standard deviation). In a more clinically viable protocol using four views in the range 0°-51°, where no other bony structures obstruct the projection of the femur, measurement errors were -0:07 ± 0:79 mm. © 2013 SPIE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The maintenance of the growth of the multibillion-dollar semiconductor industry requires the development of techniques for the fabrication and characterisation of nanoscale devices. Consequently, there is great interest in photolithography techniques such as extreme UV and x-ray. Both of these techniques are extremely expensive and technologically very demanding. In this paper we describe research on the feasibility of exploiting x-ray propagation within carbon nanotubes (CNT's) for the fabrication and characterisation of nanoscale devices. This work discusses the parameters determining the design space available. To demonstrate experimentally the feasibility of x-ray propagation, arrays of carbon nanotubes have been grown on silicon membranes. The latter are required to provide structural support for the CNT's while minimising energy loss. To form a waveguide metal is deposited between the nanotubes to block x-ray transmission in this region at the same time as cladding the CNT's. The major challenge has been to fill the spaces between the CNT's with material of sufficient thickness to block x-ray transmission while maintaining the structural integrity of the CNT's. Various techniques have been employed to fill the gaps between the nanotubes including electroplating, sputtering and evaporation. This work highlights challenges encountered in optimising the process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An X-ray imaging technique is used to probe the stability of 3-dimensional granular packs in a slowly rotating drum. Well before the surface reaches the avalanche angle, we observe intermittent plastic events associated with collective rearrangements of the grains located in the vicinity of the free surface. The energy released by these discrete events grows as the system approaches the avalanche threshold. By testing various preparation methods, we show that the pre-avalanche dynamics is not solely controlled by the difference between the free surface inclination and the avalanche angle. As a consequence, the measure of the pre-avalanche dynamics is unlikely to serve as a tool for predicting macroscopic avalanches.