106 resultados para EV charging


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A compact electron cyclotron wave resonance (ECWR) source has been developed for the high rate deposition of hydrogenated tetrahedral amorphous carbon (ta-C:H). The ECWR provides growth rates of up to 1.5 nm/s over a 4-inch diameter and an independent control of the deposition rate and ion energy. The ta-C:H was deposited using acetylene as the source gas and was characterized as having an sp3 content of up to 77%, plasmon energy of 27 eV, refractive index of 2.45, hydrogen content of about 30%, optical gap of up to 2.1 eV and RMS surface roughness of 0.04 nm. © 1999 Elsevier Science S.A. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A compact electron cyclotron wave resonance (ECWR) source has been developed for the high rate deposition of hydrogenated tetrahedral amorphous carbon (ta-C:H). The ECWR provides growth rates of up to 900 Å/min over a 4″ diameter and an independent control of the deposition rate and ion energy. The ta-C:H was deposited using acetylene as the source gas and was characterized in terms of its sp3 content, mass density, intrinsic stress, hydrogen content, C-H bonding, Raman spectra, optical gap, surface roughness and friction coefficient. The results obtained indicated that the film properties were maximized at an ion energy of approximately 167 eV, corresponding to an energy per daughter carbon ion of 76 eV. The relationship between the incident ion energy and film densification was also explained in terms of the subsurface implantation of carbon ions into the growing film.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The addition of silicon to hydrogenated amorphous carbon can have the advantageous effect of lowering the compressive stress, improving the thermal stability of its hydrogen and maintaining a low friction coefficient up to high humidity. Most experiments to date have been on a-C1-xSix:H alloys deposited by RF plasma enhanced chemical vapour deposition (PECVD). This method gives alloys with considerable hydrogen content and only moderate hardness. Here, we use a high plasma density source, the electron cyclotron wave resonance (ECWR) source, to prepare films with a high deposition rate. The composition and bonding in the alloys is determined by XPS, visible and UV Raman and FTIR spectroscopy. We find that it is possible to produce hard, low stress, low friction, almost humidity insensitive a-C1-xSix:H alloys with a good optical transparency and a band gap over 2 eV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrogenated amorphous carbon nitride (a-C:N:H) has been synthesized using a high plasma density electron cyclotron wave resonance (ECWR) technique using N2 and C2H2 as source gases, at different ratios and a fixed ion energy (80 eV). The composition, structure and bonding state of the films were investigated and related to their optical and electrical properties. The nitrogen content in the film rises rapidly until the N2/C2H2 gas ratio reaches 2 and then increases more gradually, while the deposition rate decreases steeply, placing an upper limit for the nitrogen incorporation at 30 at%. For nitrogen contents above 20 at%, the band gap and sp3-bonded carbon fraction decrease from 1.7 to 1.1 eV and approximately 65 to 40%, respectively. Films with higher nitrogen content are less dense than the original hydrogenated tetrahedral amorphous carbon (ta-C:H) film but, because they have a relatively high band gap (1.1 eV), high resistivity (109 Ω cm) and moderate sp3-bonded carbon fraction (40%), they should be classed as polymeric in nature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The addition of silicon to hydrogenated amorphous carbon can have the advantageous effect of lowering the compressive stress, improving the thermal stability of its hydrogen, and maintaining a low friction coefficient up to high humidity. Most experiments to date have been on hydrogenated amorphous carbon-silicon alloys (a-C1-xSix:H) deposited by rf plasma enhanced chemical vapor deposition. This method gives alloys with sizeable hydrogen content and only moderate hardness. Here we use a high plasma density source known as the electron cyclotron wave resonance source to prepare films with higher sp3 content and lower hydrogen content. The composition and bonding in the alloys is determined by x-ray photoelectron spectroscopy, Rutherford backscattering, elastic recoil detection analysis, visible and ultraviolet (UV) Raman spectroscopy, infrared spectroscopy, and x-ray reflectivity. We find that it is possible to produce relatively hard, low stress, low friction, almost humidity insensitive a-C1-xSix:H alloys with a good optical transparency and a band gap well over 2.5 eV. The friction behavior and friction mechanism of these alloys are studied and compared with that of a-C:H, ta-C:H, and ta-C. We show how UV Raman spectroscopy allows the direct detection of Si-C, Si-Hx, and C-Hx vibrations, not seen in visible Raman spectra. © 2001 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The majority of attempts to synthesize the theoretically predicted superhard phase β-C3N4 have been driven towards the use of techniques which maximize both the carbon sp3 levels and the amount of nitrogen incorporated within the film. However, as yet no attempt has been made to understand the mechanism behind the resultant chemical sputter process and its obvious effect upon film growth. In this work, however, the chemical sputtering process has been investigated through the use of an as-deposited tetrahedrally bonded amorphous carbon film with a high density nitrogen plasma produced using an rf-based electron cyclotron wave resonance source. The results obtained suggested the presence of two distinct ion energy dependent regimes. The first, below 100 eV, involves the chemical sputtering of carbon from the surface, whereas the second at ion energies in excess of 100 eV exhibits a drop in sputter rate associated with the subplantation of nitrogen within the carbon matrix. Furthermore, as the sample temperature is increased there is a concomitant decrease in sputter rate suggesting that the rate is controlled by the adsorption and desorption of additional precursor species rather than the thermal desorption of CN. A simple empirical model has been developed in order to elucidate some of the primary reactions involved in the sputter process. Through the incorporation of various previously determined experimental parameters including electron temperature, ion current density, and nitrogen partial pressure the results indicated that molecular nitrogen physisorbed at the ta-C surface was the dominant precursor involved in the chemical sputter process. However, as the physisorption enthalpy of molecular nitrogen is low this suggests that activation of this molecular species takes place only through ion impact at the surface. The obtained results therefore provide important information for the modeling and growth of high density carbon nitride. © 2001 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, we report the hydrogen content estimation of the hydrogenated amorphous carbon (a-C:H) films using visible Raman spectroscopy in a fast and nondestructive way. Hydrogenated diamondlike carbon films were deposited by the plasma enhanced chemical vapor deposition, plasma beam source, and integrated distributed electron cyclotron resonance techniques. Methane and acetylene were used as source gases resulting in different hydrogen content and sp2/sp3 fraction. Ultraviolet-visible (UV-Vis) spectroscopic ellipsometry (1.5-5 eV) as well as UV-Vis spectroscopy were provided with the optical band gap (Tauc gap). The sp2/sp3 fraction and the hydrogen content were independently estimated by electron energy loss spectroscopy and elastic recoil detection analysis-Rutherford back scattering, respectively. The Raman spectra that were acquired in the visible region using the 488 nm line shows the superposition of Raman features on a photoluminescence (PL) background. The direct relationship of the sp2 content and the optical band gap has been confirmed. The difference in the PL background for samples of the same optical band gap (sp2 content) and different hydrogen content was demonstrated and an empirical relationship between the visible Raman spectra PL background slope and the corresponding hydrogen content was extracted. © 2004 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using spcctroscopic ellipsometry (SE), we have measured the optical properties and optical gaps of a series of amorphous carbon (a-C) films ∼ 100-300 Å thick, prepared using a filtered beam of C+ ions from a cathodic arc. Such films exhibit a wide range of sp3-bonded carbon contents from 20 to 76 at.%, as measured by electron energy loss spectroscopy (EELS). The Taue optical gaps of the a-C films increase monotonically from 0.65 eV for 20 at.% sp3 C to 2.25 eV for 76 at.% sp3 C. Spectra in the ellipsometric angles (1.5-5 eV) have been analyzed using different effective medium theories (EMTs) applying a simplified optical model for the dielectric function of a-C, assuming a composite material with sp2 C and sp3 C components. The most widely used EMT, namely that of Bruggeman (with three-dimensionally isotropic screening), yields atomic fractions of sp3 C that correlate monotonically with those obtained from EELS. The results of the SE analysis, however, range from 10 to 25 at.% higher than those from EELS. In fact, we have found that the volume percent sp3 C from SE using the Bruggeman EMT shows good numerical agreement with the atomic percent sp3 C from EELS. The SE-EELS discrepancy has been reduced by using an optical model in which the dielectric function of the a-C is determined as a volume-fraction-weighted average of the dielectric functions of the sp2 C and sp3 C components. © 1998 Elsevier Science S.A.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using spectroscopic ellipsometry (SE), we have measured the optical properties of amorphous carbon (a-C) films ∼ 10-30 nm thick prepared using a filtered beam of C+ ions from a cathodic arc. Such films exhibit a wide range of sp3-bonded carbon contents from 20 to 76 at.% as measured by electron energy loss spectroscopy (EELS), and a range of optical gaps from 0.65 eV (20 at.% sp3 C) to 2.25 eV (76 at.% sp3 C) as measured by SE. SE data from 1.5 to 5 eV have been analyzed by applying the most widely used effective medium theory (EMT) namely that of Bruggeman with isotropic screening, assuming a model of the material as a composite with sp2 C and sp3 C components. Although the atomic fractions of sp3 C deduced by SE with the Bruggeman EMT correlate monotonically with those obtained by EELS, the SE results range from 10 to 25 at.% higher. The possible origins of this discrepancy are discussed within the framework of an optical composite. Improved agreement between SE and EELS is obtained by employing a simple form for the EMT, in which the effective dielectric function is determined as a volume-fraction-weighted average of the dielectric functions of the two components. © 1998 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The detailed understanding of the electronic properties of carbon-based materials requires the determination of their electronic structure and more precisely the calculation of their joint density of states (JDOS) and dielectric constant. Low electron energy loss spectroscopy (EELS) provides a continuous spectrum which represents all the excitations of the electrons within the material with energies ranging between zero and about 100 eV. Therefore, EELS is potentially more powerful than conventional optical spectroscopy which has an intrinsic upper information limit of about 6 eV due to absorption of light from the optical components of the system or the ambient. However, when analysing EELS data, the extraction of the single scattered data needed for Kramers Kronig calculations is subject to the deconvolution of the zero loss peak from the raw data. This procedure is particularly critical when attempting to study the near-bandgap region of materials with a bandgap below 1.5 eV. In this paper, we have calculated the electronic properties of three widely studied carbon materials; namely amorphous carbon (a-C), tetrahedral amorphous carbon (ta-C) and C60 fullerite crystal. The JDOS curve starts from zero for energy values below the bandgap and then starts to rise with a rate depending on whether the material has a direct or an indirect bandgap. Extrapolating a fit to the data immediately above the bandgap in the stronger energy loss region was used to get an accurate value for the bandgap energy and to determine whether the bandgap is direct or indirect in character. Particular problems relating to the extraction of the single scattered data for these materials are also addressed. The ta-C and C60 fullerite materials are found to be direct bandgap-like semiconductors having a bandgaps of 2.63 and 1.59eV, respectively. On the other hand, the electronic structure of a-C was unobtainable because it had such a small bandgap that most of the information is contained in the first 1.2 eV of the spectrum, which is a region removed during the zero loss deconvolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The optical and electronic properties of highly tetrahedral amorphous diamond-like carbon (amorphous diamond, a-D) films were investigated. The structure of the films grown on silicon and glass substrates, under similar deposition conditions using a compact filtered cathodic vacuum arc system, are compared using electron energy loss spectroscopy (EELS). Results from hydrogenation of the films are also reported. The hydrogenated films show two prominent IR absorption peaks centered at 2920 and 2840 cm-1, which are assigned to the stretch mode of the C-H bond in the sp3 configuration on the C-H3 and C-H sites respectively. The high loss EELS spectra show no reduction in the high sp3 content in the hydrogenated films. UV and visible transmission spectra of a-D thin films are also presented. The optical band gap of 2.0-2.2 eV for the a-D films is found to be consistent with the electronic bandgap. The relationship between the intrinsic compressive stress in the films and the refractive index is also presented. The space charge limited current flow is analyzed and coupled with the optical absorption data to give an estimate of 1018 cm-3 eV-1 for the valence band edge density of states.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Non-hydrogenated tetrahedral amorphous carbon (ta-C) has shown superior field emission characteristics. The understanding of the emission mechanism has been hindered by the lack of any directly measured data on the band offsets between ta-C and Si. In this paper results from direct in situ X-ray photoemission spectroscopy (XPS) measurements of the band-offset between ta-C and Si are reported. The measurements were carried out using a filtered cathodic vacuum arc (FCVA) deposition system attached directly to an ultra-high vacuum (UHV) XPS chamber via a load lock chamber. Repeated XPS measurements were carried out after monolayer depositions on in situ cleaned Si substrates. The total film thickness for each set of measurements was approximately 5 nm. Analysis of the data from undoped ta-C on n and p Si show the unexpected result that the conduction band barrier between Si and ta-C remains around 1.0 eV, but that the valence band barrier changes from 0.7 to 0.0 eV. The band line up derived from these barriers suggests that the Fermi level in the ta-C lies 0.3 eV above the valence band on both p and n+Si. The heterojunction barriers when ta-C is doped with nitrogen are also presented. The implications of the heterojunction energy barrier heights for field emission from ta-C are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mixed phase carbon-diamond films which consist of small grain diamond in an a:C matrix were deposited on polished Si using a radio frequency CH4 Ar plasma CVD deposition process. Ellipsometry, surface profilometry, scanning electron microscopy (SEM) and spectrophotometry were used to analyse these films. Film thicknesses were typically 50-100 nm with a surface roughness of ± 30 A ̊ over centimetre length scans. SEM analysis showed the films were smooth and pinhole free. The Si substrate was etched using backside masking and a directional etch to give taut carbon-diamond membranes on a Si grid. Spectrophotometry was used to analyse the optical properties of these membranes. Band gap control was achieved by varying the dc bias of the deposition process. Band gaps of 1.2 eV to 4.0 eV were achieved in these membranes. A technique for controlling the compressive stress in the films, which can range from 0.02 to 7.5 GPa has been employed. This has allowed the fabrication of thin, low stress, high band gap membranes that are extremely tough and chemically inert. Such carbon-diamond membranes seem promising for applications as windows in analytical instruments. © 1992.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The generation of 22 ps pulses with peak powers of 0.74 W by a gain-switched InGaN violet laser diode is reported. Significant pulse width dependence on repetition rate is observed. © 2011 OSA.