42 resultados para Dissolution rates


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Micro-scale abrasion (ball cratering) tests were performed with different combinations of ball and bulk specimen materials, under different test conditions, such as load and abrasive slurry concentration. Wear modes were classified into two types: with rolling particle motion and with grooving particle motion. Wear rates observed with rolling particle motion were relatively insensitive to test conditions, whereas with grooving motion they varied much more. It is suggested that rolling abrasion is therefore a more appropriate mode if reproducible test results are desired. The motion of the abrasive particles can be reliably predicted from the knowledge of hardnesses and elastic properties of the ball and the specimen, and from the normal load and the abrasive slurry concentration. General trends in wear resistance measured in the micro-scale abrasion test with rolling particle motion are similar to those reported in tests with fixed abrasives with sliding particle motion, although the variation in wear resistance with hardness is significantly smaller. © 2004 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method is described for measuring the mechanical properties of polymers in compression at strain rates in the range approximately 300-500 s-1. A gravity-driven pendulum is used to load a specimen on the end of an instrumented Hopkinson output bar and the results are processed by a microcomputer. Stress-strain curves up to high strains are presented for polycarbonate, polyethersulphone and high density polyethylene over a range of temperatures. The value of yield stress, for all three polymers, was found to vary linearly with log (strain rate) at strain rates up to 500 s-1. © 1985.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rate and direction of regrowth of amorphous layers, created by self-implantation, in silicon-on-sapphire (SOS) have been studied using time resolved reflectivity (TRR) experiments performed simultaneously at two wavelengths. Regrowth of an amorphous layer towards the surface was observed in specimens implanted with 3 multiplied by (times) 10**1**5Si** plus /cm**2 at 50keV and regrowth of a buried amorphous layer, from a surface seed towards the sapphire, was observed in specimens implanted with 1 multiplied by (times) 10**1**5Si** plus /cm**2 at 175keV. Rapid isothermal heating to regrow the layers was performed in an electron beam annealing system. The combination of 514. 5nm and 632. 8nm wavelengths was found to be particularly useful for TRR studies since the high absorption in amorphous silicon, at the shorter wavelength, means that the TRR trace is not complicated by reflection from the silicon-sapphire interface until regrowth is nearly complete.