18 resultados para Disaster Resilience
Resumo:
Social and political concerns are frequently reflected in the design of school buildings, often in turn leading to the development of technical innovations. One example is a recurrent concern about the physical health of the nation, which has at several points over the last century prompted new design approaches to natural light and ventilation. The most critical concern of the current era is the global, rather than the indoor, environment. The resultant political focus on mitigating climate change has resulted in new regulations, and in turn considerable technical changes in building design and construction. The vanguard of this movement has again been in school buildings, set the highest targets for reducing operational carbon by the previous Government. The current austerity measures have moved the focus to the refurbishment and retrofit of existing buildings, in order to bring them up to the exacting new standards. Meanwhile there is little doubt that climate change is happening already, and that the impacts will be considerable. Climate scientists have increasing confidence in their predictions for the future; if today’s buildings are to be resilient to these changes, building designers will need to understand and design for the predicted climates in order to continue to provide comfortable and healthy spaces through the lifetimes of the buildings. This paper describes the decision processes, and the planned design measures, for adapting an existing school for future climates. The project is at St Faith’s School in Cambridge, and focuses on three separate buildings: a large Victorian block built as a substantial domestic dwelling in 1885, a smaller single storey 1970s block with a new extension, and an as-yet unbuilt single storey block designed to passivhaus principles and using environmentally friendly materials. The implications of climate change have been considered for the three particular issues of comfort, construction, and water, as set out in the report on Design for Future Climate: opportunities for adaptation in the built environment (Gething, 2010). The adaptation designs aim to ensure each of the three very different buildings remains fit for purpose throughout the 21st century, continuing to provide a healthy environment for the children. A forth issue, the reduction of carbon and the mitigation of other negative environmental impacts of the construction work, is also a fundamental aim for the school and the project team. Detailed modelling of both the operational and embodied energy and carbon of the design options is therefore being carried out, in order that the whole life carbon costs of the adaptation design options may be minimised. The project has been funded by the Technology Strategy Board as part of the Design for Future Climates programme; the interdisciplinary team includes the designers working on the current school building projects and the school bursar, supported by researchers from the University of Cambridge Centre for Sustainable Development. It is hoped that lessons from the design process, as well as the solutions themselves, will be transferable to other buildings in similar climatic regions.
Resumo:
Urbanisation is the great driving force of the twenty-first century. Cities are associated with both productivity and creativity, and the benefits offered by closely connected and high density living and working contribute to sustainability. At the same time, cities need extensive infrastructure – like water, power, sanitation and transportation systems – to operate effectively. Cities therefore comprise multiple components, forming both static and dynamic systems that are interconnected directly and indirectly on a number of levels, all forming the backdrop for the interaction of people and processes. Bringing together large numbers of people and complex products in rich interactions can lead to vulnerability from hazards, threats and even trends, whether natural hazards, epidemics, political upheaval, demographic changes, economic instability and/or mechanical failures; The key to countering vulnerability is the identification of critical systems and clear understanding of their interactions and dependencies. Critical systems can be assessed methodically to determine the implications of their failure and their interconnectivities with other systems to identify options. The overriding need is to support resilience – defined here as the degree to which a system or systems can continue to function effectively in a changing environment. Cities need to recognise the significance of devising adaptation strategies and processes to address a multitude of uncertainties relating to climate, economy, growth and demography. In this paper we put forward a framework to support cities in understanding the hazards, threats and trends that can make them vulnerable to unexpected changes and unpredictable shocks. The framework draws on an asset model of the city, in which components that contribute to resilience include social capital, economic assets, manufactured assets, and governance. The paper reviews the field, and draws together an overarching framework intended to help cities plan a robust trajectory towards increased resilience through flexibility, resourcefulness and responsiveness. It presents some brief case studies demonstrating the applicability of the proposed framework to a wide variety of circumstances.
Resumo:
Urbanisation is one of the great driving forces of the twenty-first century. Cities generate both productivity and creativity, and the benefits offered by high-density living and working contribute to sustainability. Cities comprise multiple components, forming both static and dynamic systems that are interconnected directly and indirectly on a number of levels. Bringing together large numbers of people within a complex system can lead to vulnerability from a wide range of hazards, threats and trends. The key to reducing this vulnerability is the identification of critical systems and determination of the implications of their failure and their interconnectivities with other systems. One emerging approach to these challenges focuses on building resilience – defined here as the degree to which a system can continue to function effectively in a changing environment. This paper puts forward a framework designed to help engineers, planners and designers to support cities in understanding the hazards, threats and trends that can make them vulnerable, and identify focus areas for building resilience into the systems, which allow it to function and prosper. Four case studies of cities whose resilience was tested by recent extreme weather events are presented, seeking to demonstrate the application of the proposed framework.