48 resultados para Dialogue.
The hidden information state model: a practical framework for POMDP-based spoken dialogue management
Resumo:
This paper describes work performed as part of the U.K. Alvey sponsored Voice Operated Database Inquiry System (VODIS) project in the area of intelligent dialogue control. The principal aims of the work were to develop a habitable interface for the untrained user; to investigate the degree to which dialogue control can be used to compensate for deficiencies in recognition performance; and to examine the requirements on dialogue control for generating natural speech output. A data-driven methodology is described based on the use of frames in which dialogue topics are organized hierarchically. The concept of a dynamically adjustable scope is introduced to permit adaptation to recognizer performance and the use of historical and hierarchical contexts are described to facilitate the construction of contextually relevant output messages. © 1989.
Resumo:
Over the past decade, a variety of user models have been proposed for user simulation-based reinforcement-learning of dialogue strategies. However, the strategies learned with these models are rarely evaluated in actual user trials and it remains unclear how the choice of user model affects the quality of the learned strategy. In particular, the degree to which strategies learned with a user model generalise to real user populations has not be investigated. This paper presents a series of experiments that qualitatively and quantitatively examine the effect of the user model on the learned strategy. Our results show that the performance and characteristics of the strategy are in fact highly dependent on the user model. Furthermore, a policy trained with a poor user model may appear to perform well when tested with the same model, but fail when tested with a more sophisticated user model. This raises significant doubts about the current practice of learning and evaluating strategies with the same user model. The paper further investigates a new technique for testing and comparing strategies directly on real human-machine dialogues, thereby avoiding any evaluation bias introduced by the user model. © 2005 IEEE.
Resumo:
Successful innovation requires effective communication within and between technical and nontechnical communities, which can be challenging due to different educational backgrounds, experience, perceptions, and attitudes. Roadmapping has emerged as a method that can enable effective dialogue between these groups, and the way in which information is structured is a key feature that enables this communication. This is an area that has not received much attention in the literature, and this article seeks to address this gap by describing in detail the structures that have been successfully applied in roadmapping workshops and processes, from which key learning points and future research directions are identified.
Resumo:
This paper describes how Bayesian updates of dialogue state can be used to build a bus information spoken dialogue system. The resulting system was deployed as part of the 2010 Spoken Dialogue Challenge. The purpose of this paper is to describe the system, and provide both simulated and human evaluations of its performance. In control tests by human users, the success rate of the system was 24.5% higher than the baseline Lets Go! system. ©2010 IEEE.