23 resultados para Deformable templates


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Statistical approaches for building non-rigid deformable models, such as the Active Appearance Model (AAM), have enjoyed great popularity in recent years, but typically require tedious manual annotation of training images. In this paper, a learning based approach for the automatic annotation of visually deformable objects from a single annotated frontal image is presented and demonstrated on the example of automatically annotating face images that can be used for building AAMs for fitting and tracking. This approach employs the idea of initially learning the correspondences between landmarks in a frontal image and a set of training images with a face in arbitrary poses. Using this learner, virtual images of unseen faces at any arbitrary pose for which the learner was trained can be reconstructed by predicting the new landmark locations and warping the texture from the frontal image. View-based AAMs are then built from the virtual images and used for automatically annotating unseen images, including images of different facial expressions, at any random pose within the maximum range spanned by the virtually reconstructed images. The approach is experimentally validated by automatically annotating face images from three different databases. © 2009 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The introduction of new materials and processes to microfabrication has, in large part, enabled many important advances in microsystems, labon- a-chip devices, and their applications. In particular, capabilities for cost-effective fabrication of polymer microstructures were transformed by the advent of soft lithography and other micromolding techniques 1,2, and this led a revolution in applications of microfabrication to biomedical engineering and biology. Nevertheless, it remains challenging to fabricate microstructures with well-defined nanoscale surface textures, and to fabricate arbitrary 3D shapes at the micro-scale. Robustness of master molds and maintenance of shape integrity is especially important to achieve high fidelity replication of complex structures and preserving their nanoscale surface texture. The combination of hierarchical textures, and heterogeneous shapes, is a profound challenge to existing microfabrication methods that largely rely upon top-down etching using fixed mask templates. On the other hand, the bottom-up synthesis of nanostructures such as nanotubes and nanowires can offer new capabilities to microfabrication, in particular by taking advantage of the collective self-organization of nanostructures, and local control of their growth behavior with respect to microfabricated patterns. Our goal is to introduce vertically aligned carbon nanotubes (CNTs), which we refer to as CNT "forests", as a new microfabrication material. We present details of a suite of related methods recently developed by our group: fabrication of CNT forest microstructures by thermal CVD from lithographically patterned catalyst thin films; self-directed elastocapillary densification of CNT microstructures; and replica molding of polymer microstructures using CNT composite master molds. In particular, our work shows that self-directed capillary densification ("capillary forming"), which is performed by condensation of a solvent onto the substrate with CNT microstructures, significantly increases the packing density of CNTs. This process enables directed transformation of vertical CNT microstructures into straight, inclined, and twisted shapes, which have robust mechanical properties exceeding those of typical microfabrication polymers. This in turn enables formation of nanocomposite CNT master molds by capillary-driven infiltration of polymers. The replica structures exhibit the anisotropic nanoscale texture of the aligned CNTs, and can have walls with sub-micron thickness and aspect ratios exceeding 50:1. Integration of CNT microstructures in fabrication offers further opportunity to exploit the electrical and thermal properties of CNTs, and diverse capabilities for chemical and biochemical functionalization 3. © 2012 Journal of Visualized Experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an explicit time-marching formulation for the solution of the coupled thermal flow mechanical behavior of gas- hydrate sediment. The formulation considers the soil skeleton as a deformable elastoplastic continuum, with an emphasis on the effect of hydrate (and its dissociation) on the stress-strain behavior of the soil. In the formulation, the hydrate is assumed to deform with the soil and may dissociate into gas and water. The formulation is explicitly coupled, such that the changes in temperature because of energy How and hydrate dissociation affect the skeleton stresses and fluid (water and gas) pressures. This, in return, affects the mechanical behavior. A simulation of a vertical well within a layered soil is presented. It is shown that the heterogeneity of hydrate saturation causes different rates of dissociation in the layers. The difference alters the overall gas production and also the mechanical-deformation pattern, which leads to loading/ unloading shearing along the interfaces between the layers. Copyright © 2013 Society of Petorlleum Engineers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We develop a group-theoretical analysis of slow feature analysis for the case where the input data are generated by applying a set of continuous transformations to static templates. As an application of the theory, we analytically derive nonlinear visual receptive fields and show that their optimal stimuli, as well as the orientation and frequency tuning, are in good agreement with previous simulations of complex cells in primary visual cortex (Berkes and Wiskott, 2005). The theory suggests that side and end stopping can be interpreted as a weak breaking of translation invariance. Direction selectivity is also discussed. © 2011 Massachusetts Institute of Technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two solar cells based on an InGaN/GaN p-i-n hetero-junction, but having different dislocation densities, were fabricated and characterized. The structures were grown on c-plane (0001) GaN-on-sapphire templates with different threading dislocation (TD) densities of 5×108 and 5×109 cm-2. Structural characterization revealed the presence of V-defects in the InGaN epilayer. Since each V-defect was associated with a TD, the structural as well as the optical properties worsened with a higher TD density in the GaN/sapphire template. It was also found that additional dislocations were generated in the p-GaN layer over the V-defects in the InGaN layer. Because of its superior structural quality, the peak external quantum efficiency (EQE) of the low TD density sample was three times higher than that of the high TD density sample. © 2013 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inflatable aerodynamic decelerators present potential advantages for planetary entry in missions of robotic and human exploration. The design of these structures face many engineering challenges, including complex deformable geometries, anisotropic material response, and coupled shockturbulence interactions. In this paper, we describe a comprehensive computational fluid-structure interaction study of an inflation cycle of a tension cone decelerator in supersonic flow and compare the simulations with earlier published experimental results. The aeroshell design and flow conditions closely match recent experiments conducted at Mach 2.5. The structural model is a 16-sided polygonal tension cone with seams between each segment. The computational model utilizes adaptive mesh refinement, large-eddy simulation, and shell mechanics with self-contact modeling to represent the flow and structure interaction. This study focuses on the dynamics of the structure as the inflation pressure varies gradually, and the behavior of forces experienced by the flexible and rigid (the payload capsule) structures. © 2011 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work addresses the challenging problem of unconstrained 3D human pose estimation (HPE) from a novel perspective. Existing approaches struggle to operate in realistic applications, mainly due to their scene-dependent priors, such as background segmentation and multi-camera network, which restrict their use in unconstrained environments. We therfore present a framework which applies action detection and 2D pose estimation techniques to infer 3D poses in an unconstrained video. Action detection offers spatiotemporal priors to 3D human pose estimation by both recognising and localising actions in space-time. Instead of holistic features, e.g. silhouettes, we leverage the flexibility of deformable part model to detect 2D body parts as a feature to estimate 3D poses. A new unconstrained pose dataset has been collected to justify the feasibility of our method, which demonstrated promising results, significantly outperforming the relevant state-of-the-arts. © 2013 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modular self-reconfigurable robots have previously demonstrated that automatic control of their own body shapes enriches their behavioural functions. However, having predefined rigid modules technically limits real-world systems from being hyper-redundant and compliant. Encouraged by recent progress using elastically deformable material for robots, we propose the concept of soft self-reconfigurable robots which may become hyper-flexible during interaction with the environment. As the first attempt towards this goal, the paper proposes a novel approach using viscoelastic material Hot-Melt Adhesives (HMAs): for physical connection and disconnection control between bodies that are not necessarily predefined rigid modules. We present a model that characterizes the temperature dependency of the strength of HMA bonds, which is then validated and used in a feedback controller for automatic connection and disconnection. Using a minimalistic robot platform that is equipped with two devices handling HMAs, the performance of this method is evaluated in a pick-and-place experiment with aluminium and wooden parts. © 2012 IEEE.