31 resultados para Defined benefit pension plans
Resumo:
A technique for pattern transfer onto carbon-diamond films deposited by radio-frequency plasma-enhanced chemical vapour deposition is reported. Such a technique involves standard photolithography processes and reactive ion etching by oxygen and is compatible with present day microelectronic technology. The patterns transferred are well defined with very good resolution. © 1992.
Resumo:
Laser spectroscopy studies are being prepared to measure the 1s ground state hyperfine splitting in trapped cold highly charged ions. The purpose of such experiments is to test quantum electrodynamics in the strong electric field regime. These experiments form part of the HITRAP project at GSI. A brief review of the planned experiments is presented. © 2005 Elsevier B.V. All rights reserved.
Resumo:
The generation of new medicinal products is both a contributor to global economic growth and a source of valuable benefits to human health. Given their direct responsibility for public health, regulatory authorities monitor closely both the development and exploitation of the underlying technologies and the products derived from them. The manner in which such regulation is implemented can result in regulators constraining or facilitating the generation of new products. This paper will study as an example the impact of EU Risk Management Plans (EU-RMPs), which have been mandatory for the approval of new medicines since 2005, on both the industry and regulatory authorities. In interviews, the responses of those who had experience of the implementation of EU-RMPs were mixed. Although the benefits of a more structured and predictable approach to the evaluation of risk were appreciated, some respondents perceived the regulation as an excessive burden on their organisations. The exploration of factors that influence how EU-RMP regulation affects individual firms provides new insights for both regulators and managers, and demonstrates one aspect of the complexity of the process by which new medicinal products are brought to market.
Resumo:
The generation of new medicinal products is both a contributor to global economic growth and a source of valuable benefits to human health. Given their direct responsibility for public health, regulatory authorities monitor closely both the development and exploitation of the underlying technologies and the products derived from them. The manner in which such regulation is implemented can result in regulators constraining or facilitating the generation of new products. This paper will study as an example the impact of EU Risk Management Plans (EU-RMPs), which have been mandatory for the approval of new medicines since 2005, on both the industry and regulatory authorities. In interviews, the responses of those who had experience of the implementation of EU-RMPs were mixed. Although the benefits of a more structured and predictable approach to the evaluation of risk were appreciated, some respondents perceived the regulation as an excessive burden on their organisations. The exploration of factors that influence how EU-RMP regulation affects individual firms provides new insights for both regulators and managers, and demonstrates one aspect of the complexity of the process by which new medicinal products are brought to market. © 2010 IEEE.
Resumo:
Obtaining accurate confidence measures for automatic speech recognition (ASR) transcriptions is an important task which stands to benefit from the use of multiple information sources. This paper investigates the application of conditional random field (CRF) models as a principled technique for combining multiple features from such sources. A novel method for combining suitably defined features is presented, allowing for confidence annotation using lattice-based features of hypotheses other than the lattice 1-best. The resulting framework is applied to different stages of a state-of-the-art large vocabulary speech recognition pipeline, and consistent improvements are shown over a sophisticated baseline system. Copyright © 2011 ISCA.
Resumo:
This paper focuses on the stiffness and strength of lattices with multiple hierarchical levels. We examine two-dimensional and three-dimensional lattices with up to three levels of structural hierarchy. At each level, the topology and the orientation of the lattice are prescribed, while the relative density is varied over a defined range. The properties of selected hierarchical lattices are obtained via a multiscale approach applied iteratively at each hierarchical level. The results help to quantify the effect that multiple orders of structural hierarchy produces on stretching and bending dominated lattices. Material charts for the macroscopic stiffness and strength illustrate how the property range of the lattices can expand as subsequent levels of hierarchy are added. The charts help to gain insight into the structural benefit that multiple hierarchies can impart to the macroscopic performance of a lattice. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
The task of word-level confidence estimation (CE) for automatic speech recognition (ASR) systems stands to benefit from the combination of suitably defined input features from multiple information sources. However, the information sources of interest may not necessarily operate at the same level of granularity as the underlying ASR system. The research described here builds on previous work on confidence estimation for ASR systems using features extracted from word-level recognition lattices, by incorporating information at the sub-word level. Furthermore, the use of Conditional Random Fields (CRFs) with hidden states is investigated as a technique to combine information for word-level CE. Performance improvements are shown using the sub-word-level information in linear-chain CRFs with appropriately engineered feature functions, as well as when applying the hidden-state CRF model at the word level.
Resumo:
Mitigation plans to combat climate change depend on the combined implementation of many abatement options, but the options interact. Published anthropogenic emissions inventories are disaggregated by gas, sector, country, or final energy form. This allows the assessment of novel energy supply options, but is insufficient for understanding how options for efficiency and demand reduction interact. A consistent framework for understanding the drivers of emissions is therefore developed, with a set of seven complete inventories reflecting all technical options for mitigation connected through lossless allocation matrices. The required data set is compiled and calculated from a wide range of industry, government, and academic reports. The framework is used to create a global Sankey diagram to relate human demand for services to anthropogenic emissions. The application of this framework is demonstrated through a prediction of per-capita emissions based on service demand in different countries, and through an example showing how the "technical potentials" of a set of separate mitigation options should be combined.
Resumo:
In the modern engineering design cycle the use of computational tools becomes a neces- sity. The complexity of the engineering systems under consideration for design increases dramatically as the demands for advanced and innovative design concepts and engineering products is expanding. At the same time the advancements in the available technology in terms of computational resources and power, as well as the intelligence of the design software, accommodate these demands and make them a viable approach towards the chal- lenge of real-world engineering problems. This class of design optimisation problems is by nature multi-disciplinary. In the present work we establish enhanced optimisation capabil- ities within the Nimrod/O tool for massively distributed execution of computational tasks through cluster and computational grid resources, and develop the potential to combine and benefit from all the possible available technological advancements, both software and hardware. We develop the interface between a Free Form Deformation geometry manage- ment in-house code with the 2D airfoil aerodynamic efficiency evaluation tool XFoil, and the well established multi-objective heuristic optimisation algorithm NSGA-II. A simple airfoil design problem has been defined to demonstrate the functionality of the design sys- tem, but also to accommodate a framework for future developments and testing with other state-of-the-art optimisation algorithms such as the Multi-Objective Genetic Algorithm (MOGA) and the Multi-Objective Tabu Search (MOTS) techniques. Ultimately, heav- ily computationally expensive industrial design cases can be realised within the presented framework that could not be investigated before. © 2012 by the authors. Published by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
In the modern engineering design cycle the use of computational tools becomes a necessity. The complexity of the engineering systems under consideration for design increases dramatically as the demands for advanced and innovative design concepts and engineering products is expanding. At the same time the advancements in the available technology in terms of computational resources and power, as well as the intelligence of the design software, accommodate these demands and make them a viable approach towards the challenge of real-world engineering problems. This class of design optimisation problems is by nature multi-disciplinary. In the present work we establish enhanced optimisation capabilities within the Nimrod/O tool for massively distributed execution of computational tasks through cluster and computational grid resources, and develop the potential to combine and benefit from all the possible available technological advancements, both software and hardware. We develop the interface between a Free Form Deformation geometry management in-house code with the 2D airfoil aerodynamic efficiency evaluation tool XFoil, and the well established multi-objective heuristic optimisation algorithm NSGA-II. A simple airfoil design problem has been defined to demonstrate the functionality of the design system, but also to accommodate a framework for future developments and testing with other state-of-the-art optimisation algorithms such as the Multi-Objective Genetic Algorithm (MOGA) and the Multi-Objective Tabu Search (MOTS) techniques. Ultimately, heavily computationally expensive industrial design cases can be realised within the presented framework that could not be investigated before. ©2012 AIAA.