24 resultados para Cyber-Physical Systems
Resumo:
The feasibility of utilising low-cost, un-cooled vertical cavity surface-emitting lasers (VCSELs) as intensity modulators in real-time optical OFDM (OOFDM) transceivers is experimentally explored, for the first time, in terms of achievable signal bit rates, physical mechanisms limiting the transceiver performance and performance robustness. End-to-end real-time transmission of 11.25 Gb/s 64-QAM-encoded OOFDM signals over simple intensity modulation and direct detection, 25 km SSMF PON systems is experimentally demonstrated with a power penalty of 0.5 dB. The low extinction ratio of the VCSEL intensity-modulated OOFDM signal is identified to be the dominant factor determining the maximum obtainable transmission performance. Experimental investigations indicate that, in addition to the enhanced transceiver performance, adaptive power loading can also significantly improve the system performance robustness to variations in VCSEL operating conditions. As a direct result, the aforementioned capacity versus reach performance is still retained over a wide VCSEL bias (driving) current (voltage) range of 4.5 mA to 9 mA (275 mVpp to 320 mVpp). This work is of great value as it demonstrates the possibility of future mass production of cost-effective OOFDM transceivers for PON applications.
Resumo:
Physical modelling of interesting geotechnical problems has helped clarify behaviours and failure mechanisms of many civil engineering systems. Interesting visual information from physical modelling can also be used in teaching to foster interest in geotechnical engineering and recruit young researchers to our field. With this intention, the Teaching Committee of TC2 developed a web-based teaching resources centre. In this paper, the development and organisation of the resource centre using Wordpress. Wordpress is an open-source content management system which allows user content to be edited and site administration to be controlled remotely via a built-in interface. Example data from a centrifuge test on shallow foundations which could be used for undergraduate or graduate level courses is presented and its use illustrated. A discussion on the development of wiki-style addition to the resource centre for commonly used physical model terms is also presented. © 2010 Taylor & Francis Group, London.
Resumo:
One of the main claims of the nonparametric model of random uncertainty introduced by Soize (2000) [3] is its ability to account for model uncertainty. The present paper investigates this claim by examining the statistics of natural frequencies, total energy and underlying dispersion equation yielded by the nonparametric approach for two simple systems: a thin plate in bending and a one-dimensional finite periodic massspring chain. Results for the plate show that the average modal density and the underlying dispersion equation of the structure are gradually and systematically altered with increasing uncertainty. The findings for the massspring chain corroborate the findings for the plate and show that the remote coupling of nonadjacent degrees of freedom induced by the approach suppresses the phenomenon of mode localization. This remote coupling also leads to an instantaneous response of all points in the chain when one mass is excited. In the light of these results, it is argued that the nonparametric approach can deal with a certain type of model uncertainty, in this case the presence of unknown terms of higher or lower order in the governing differential equation, but that certain expectations about the system such as the average modal density may conflict with these results. © 2012 Elsevier Ltd.
Resumo:
We describe a methods of locating an RFID tag. One method comprises: transmitting tag location signals from a plurality of different transmit antennas, wherein said antennas are spaced apart by more than a near field limit distance at a frequency of a said signal; receiving a corresponding plurality of receiving return signals from said tag; and processing said tag return signals to determine a range to said tag; wherein said transmitting comprises transmitting at a plurality of different frequencies; wherein said processing comprises determining a phase difference at said plurality of different frequencies to determine said range, and wherein said determining of said phase difference determines a phase difference between either i) two or more of said transmit signals resulting in a maxima in the returned signal RSSI or ii) a first transmit signal and its corresponding return signal; and wherein said determining of said range to said tag uses said return signals weighted responsive to a respective received signal strength of the return signal. Further data which may be used for averaging may be generated by using the above techniques along with changes in the polarisation state of the transmit and receive antennas and/or physical reconfiguration of the antennas (e.g. switch the transmit and receive elements).
Resumo:
In this paper, we survey some recent results on stabilization and disturbance attenuation for nonlinear systems using a dissipativity approach. After reviewing the basic dissipativity concept, we stress the connections between Lyapunov designs and the problem of achieving passivity by feedback. Focusing on physical models, we then illustrate how the design of stabilizing feedback can take advantage of the natural energy balance equation of the system. Here stabilization is viewed as the task of shaping the energy of the system to enforce a minimum at the desired equilibrium. Finally, we show the implications of dissipativity theory as an appropriate framework to study the nonlinear H∞ control problem. © 2002 EUCA.
Resumo:
The aerodynamic design of turbomachinery presents the design optimisation community with a number of exquisite challenges. Chief among these are the size of the design space and the extent of discontinuity therein. This discontinuity can serve to limit the full exploitation of high-fidelity computational fluid dynamics (CFD): such codes require detailed geometric information often available only sometime after the basic configuration of the machine has been set by other means. The premise of this paper is that it should be possible to produce higher performing designs in less time by exploiting multi-fidelity techniques to effectively harness CFD earlier in the design process, specifically by facilitating its participation in configuration selection. The adopted strategy of local multi-fidelity correction, generated on demand, combined with a global search algorithm via an adaptive trust region is first tested on a modest, smooth external aerodynamic problem. Speed-up of an order of magnitude is demonstrated, comparable to established techniques applied to smooth problems. A number of enhancements aimed principally at effectively evaluating a wide range of configurations quickly is then applied to the basic strategy, and the emerging technique is tested on a generic aeroengine core compression system. A similar order of magnitude speed-up is achieved on this relatively large and highly discontinuous problem. A five-fold increase in the number of configurations assessed with CFD is observed. As the technique places constraints neither on the underlying physical modelling of the constituent analysis codes nor on first-order agreement between those codes, it has potential applicability to a range of multidisciplinary design challenges. © 2012 by Jerome Jarrett and Tiziano Ghisu.
Resumo:
We investigate the dependency of electrostatic interaction forces on applied potentials in electrostatic force microscopy (EFM) as well as in related local potentiometry techniques such as Kelvin probe microscopy (KPM). The approximated expression of electrostatic interaction between two conductors, usually employed in EFM and KPM, may loose its validity when probe-sample distance is not very small, as often realized when realistic nanostructured systems with complex topography are investigated. In such conditions, electrostatic interaction does not depend solely on the potential difference between probe and sample, but instead it may depend on the bias applied to each conductor. For instance, electrostatic force can change from repulsive to attractive for certain ranges of applied potentials and probe-sample distances, and this fact cannot be accounted for by approximated models. We propose a general capacitance model, even applicable to more than two conductors, considering values of potentials applied to each of the conductors to determine the resulting forces and force gradients, being able to account for the above phenomenon as well as to describe interactions at larger distances. Results from numerical simulations and experiments on metal stripe electrodes and semiconductor nanowires supporting such scenario in typical regimes of EFM investigations are presented, evidencing the importance of a more rigorous modeling for EFM data interpretation. Furthermore, physical meaning of Kelvin potential as used in KPM applications can also be clarified by means of the reported formalism. © 2009 American Institute of Physics.