22 resultados para Cultural goods
Resumo:
Our society is addicted to steel. Global demand for steel has risen to 1.4 billion tonnes a year and is set to at least double by 2050, while the steel industry generates nearly a 10th of the world's energy related CO₂ emissions. Meeting our 2050 climate change targets would require a 75% reduction in CO₂ emissions for every tonne of steel produced and finding credible solutions is proving a challenge. The starting point for understanding the environmental impacts of steel production is to accurately map the global steel supply chain and identify the biggest steel flows where actions can be directed to deliver the largest impact. In this paper we present a map of global steel, which for the first time traces steel flows from steelmaking, through casting, forming, and rolling, to the fabrication of final goods. The diagram reveals the relative scale of steel flows and shows where efforts to improve energy and material efficiency should be focused.
Resumo:
Demand for aluminum in final products has increased 30-fold since 1950 to 45 million tonnes per year, with forecasts predicting this exceptional growth to continue so that demand will reach 2-3 times today's levels by 2050. Aluminum production uses 3.5% of global electricity and causes 1% of global CO2 emissions, while meeting a 50% cut in emissions by 2050 against growing demand would require at least a 75% reduction in CO2 emissions per tonne of aluminum produced--a challenging prospect. In this paper we trace the global flows of aluminum from liquid metal to final products, revealing for the first time a complete map of the aluminum system and providing a basis for future study of the emissions abatement potential of material efficiency. The resulting Sankey diagram also draws attention to two key issues. First, around half of all liquid aluminum (~39 Mt) produced each year never reaches a final product, and a detailed discussion of these high yield losses shows significant opportunities for improvement. Second, aluminum recycling, which avoids the high energy costs and emissions of electrolysis, requires signification "dilution" (~ 8 Mt) and "cascade" (~ 6 Mt) flows of higher aluminum grades to make up for the shortfall in scrap supply and to obtain the desired alloy mix, increasing the energy required for recycling.
Resumo:
Consumer goods contribute to anthropogenic climate change across their product life cycles through carbon emissions arising from raw materials extraction, processing, logistics, retail and storage, through to consumer use and disposal. How can consumer goods manufacturers make stepwise reductions in their product life cycle carbon emissions by engaging with, and influencing their main stakeholders? A semi-structured interview approach was used: to identify strategies and actions, stakeholders in the consumer goods industry (suppliers, manufacturers, retailers and NGOs) were interviewed about carbon emissions reduction projects. Based on this, a summarising presentation was made, which was shared during a second round of interviews to validate and refine the results. The results demonstrate several opportunities that have not yet been exploited by companies. These include editing product choice in stores to remove products with higher carbon footprints, using marketing competences for environmental benefits, and bundling competences to create winewinewin business models. Governments and NGOs have important enabling roles to accelerate industry change. Although this work was initially developed to explore how companies can reduce life cycle carbon emissions of their products, these strategies and actions also give insights on how companies can influence and anticipate stakeholder actions in general. © 2012 Elsevier Ltd. All rights reserved.