17 resultados para Criminal trajectory


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temporal synchronization of multiple video recordings of the same dynamic event is a critical task in many computer vision applications e.g. novel view synthesis and 3D reconstruction. Typically this information is implied through the time-stamp information embedded in the video streams. User-generated videos shot using consumer grade equipment do not contain this information; hence, there is a need to temporally synchronize signals using the visual information itself. Previous work in this area has either assumed good quality data with relatively simple dynamic content or the availability of precise camera geometry. Our first contribution is a synchronization technique which tries to establish correspondence between feature trajectories across views in a novel way, and specifically targets the kind of complex content found in consumer generated sports recordings, without assuming precise knowledge of fundamental matrices or homographies. We evaluate performance using a number of real video recordings and show that our method is able to synchronize to within 1 sec, which is significantly better than previous approaches. Our second contribution is a robust and unsupervised view-invariant activity recognition descriptor that exploits recurrence plot theory on spatial tiles. The descriptor is individually shown to better characterize the activities from different views under occlusions than state-of-the-art approaches. We combine this descriptor with our proposed synchronization method and show that it can further refine the synchronization index. © 2013 ACM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been an increasing interest in the use of mechanical dynamics, (e.g., assive, Elastic, And viscous dynamics) for energy efficient and agile control of robotic systems. Despite the impressive demonstrations of behavioural performance, The mechanical dynamics of this class of robotic systems is still very limited as compared to those of biological systems. For example, Passive dynamic walkers are not capable of generating joint torques to compensate for disturbances from complex environments. In order to tackle such a discrepancy between biological and artificial systems, We present the concept and design of an adaptive clutch mechanism that discretely covers the full-range of dynamics. As a result, The system is capable of a large variety of joint operations, including dynamic switching among passive, actuated and rigid modes. The main innovation of this paper is the framework and algorithm developed for controlling the trajectory of such joint. We present different control strategies that exploit passive dynamics. Simulation results demonstrate a significant improvement in motion control with respect to the speed of motion and energy efficiency. The actuator is implemented in a simple pendulum platform to quantitatively evaluate this novel approach.