26 resultados para Covariance estimate
Resumo:
Model compensation is a standard way of improving the robustness of speech recognition systems to noise. A number of popular schemes are based on vector Taylor series (VTS) compensation, which uses a linear approximation to represent the influence of noise on the clean speech. To compensate the dynamic parameters, the continuous time approximation is often used. This approximation uses a point estimate of the gradient, which fails to take into account that dynamic coefficients are a function of a number of consecutive static coefficients. In this paper, the accuracy of dynamic parameter compensation is improved by representing the dynamic features as a linear transformation of a window of static features. A modified version of VTS compensation is applied to the distribution of the window of static features and, importantly, their correlations. These compensated distributions are then transformed to distributions over standard static and dynamic features. With this improved approximation, it is also possible to obtain full-covariance corrupted speech distributions. This addresses the correlation changes that occur in noise. The proposed scheme outperformed the standard VTS scheme by 10% to 20% relative on a range of tasks. © 2006 IEEE.
Resumo:
This paper describes recent improvements to the Cambridge Arabic Large Vocabulary Continuous Speech Recognition (LVCSR) Speech-to-Text (STT) system. It is shown that wordboundary context markers provide a powerful method to enhance graphemic systems by implicit phonetic information, improving the modelling capability of graphemic systems. In addition, a robust technique for full covariance Gaussian modelling in the Minimum Phone Error (MPE) training framework is introduced. This reduces the full covariance training to a diagonal covariance training problem, thereby solving related robustness problems. The full system results show that the combined use of these and other techniques within a multi-branch combination framework reduces the Word Error Rate (WER) of the complete system by up to 5.9% relative. Copyright © 2011 ISCA.
Resumo:
In this paper we consider the problem of state estimation over a communication network. Using estimation quality as a metric, two communication schemes are studied and compared. In scheme one, each sensor node communicates its measurement data to the remote estimator, while in scheme two, each sensor node communicates its local state estimate to the remote estimator. We show that with perfect communication link, if the sensor has unlimited computation capability, the two schemes produce the same estimate at the estimator, and if the sensor has limited computation capability, scheme one is always better than scheme two. On the other hand, when data packet drops occur over the communication link, we show that if the sensor has unlimited computation capability, scheme two always outperforms scheme one, and if the sensor has limited computation capability, we show that in general there exists a critical packet arrival rate, above which scheme one outperforms scheme two. Simulations are provided to demonstrate the two schemes under various circumstances. © South China University of Technology and Academy of Mathematics and Systems Science, CAS and Springer-Verlag Berlin Heidelberg 2010.
Resumo:
In current methods for voice transformation and speech synthesis, the vocal tract filter is usually assumed to be excited by a flat amplitude spectrum. In this article, we present a method using a mixed source model defined as a mixture of the Liljencrants-Fant (LF) model and Gaussian noise. Using the LF model, the base approach used in this presented work is therefore close to a vocoder using exogenous input like ARX-based methods or the Glottal Spectral Separation (GSS) method. Such approaches are therefore dedicated to voice processing promising an improved naturalness compared to generic signal models. To estimate the Vocal Tract Filter (VTF), using spectral division like in GSS, we show that a glottal source model can be used with any envelope estimation method conversely to ARX approach where a least square AR solution is used. We therefore derive a VTF estimate which takes into account the amplitude spectra of both deterministic and random components of the glottal source. The proposed mixed source model is controlled by a small set of intuitive and independent parameters. The relevance of this voice production model is evaluated, through listening tests, in the context of resynthesis, HMM-based speech synthesis, breathiness modification and pitch transposition. © 2012 Elsevier B.V. All rights reserved.
Resumo:
The accurate prediction of time-changing covariances is an important problem in the modeling of multivariate financial data. However, some of the most popular models suffer from a) overfitting problems and multiple local optima, b) failure to capture shifts in market conditions and c) large computational costs. To address these problems we introduce a novel dynamic model for time-changing covariances. Over-fitting and local optima are avoided by following a Bayesian approach instead of computing point estimates. Changes in market conditions are captured by assuming a diffusion process in parameter values, and finally computationally efficient and scalable inference is performed using particle filters. Experiments with financial data show excellent performance of the proposed method with respect to current standard models.
Resumo:
Some amount of differential settlement occurs even in the most uniform soil deposit, but it is extremely difficult to estimate because of the natural heterogeneity of the soil. The compression response of the soil and its variability must be characterised in order to estimate the probability of the differential settlement exceeding a certain threshold value. The work presented in this paper introduces a probabilistic framework to address this issue in a rigorous manner, while preserving the format of a typical geotechnical settlement analysis. In order to avoid dealing with different approaches for each category of soil, a simplified unified compression model is used to characterise the nonlinear compression behavior of soils of varying gradation through a single constitutive law. The Bayesian updating rule is used to incorporate information from three different laboratory datasets in the computation of the statistics (estimates of the means and covariance matrix) of the compression model parameters, as well as of the uncertainty inherent in the model.