61 resultados para Coulomb oscillation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this experimental and numerical study, two types of round jet are examined under acoustic forcing. The first is a non-reacting low density jet (density ratio 0.14). The second is a buoyant jet diffusion flame at a Reynolds number of 1100 (density ratio of unburnt fluids 0.5). Both jets have regions of strong absolute instability at their base and this causes them to exhibit strong self-excited bulging oscillations at welldefined natural frequencies. This study particularly focuses on the heat release of the jet diffusion flame, which oscillates at the same natural frequency as the bulging mode, due to the absolutely unstable shear layer just outside the flame. The jets are forced at several amplitudes around their natural frequencies. In the non-reacting jet, the frequency of the bulging oscillation locks into the forcing frequency relatively easily. In the jet diffusion flame, however, very large forcing amplitudes are required to make the heat release lock into the forcing frequency. Even at these high forcing amplitudes, the natural mode takes over again from the forced mode in the downstream region of the flow, where the perturbation is beginning to saturate non-linearly and where the heat release is high. This raises the possibility that, in a flame with large regions of absolute instability, the strong natural mode could saturate before the forced mode, weakening the coupling between heat release and incident pressure perturbations, hence weakening the feedback loop that causes combustion instability. © 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Receptor-based detection of pathogens often suffers from non-specific interactions, and as most detection techniques cannot distinguish between affinities of interactions, false positive responses remain a plaguing reality. Here, we report an anharmonic acoustic based method of detection that addresses the inherent weakness of current ligand dependant assays. Spores of Bacillus subtilis (Bacillus anthracis simulant) were immobilized on a thickness-shear mode AT-cut quartz crystal functionalized with anti-spore antibody and the sensor was driven by a pure sinusoidal oscillation at increasing amplitude. Biomolecular interaction forces between the coupled spores and the accelerating surface caused a nonlinear modulation of the acoustic response of the crystal. In particular, the deviation in the third harmonic of the transduced electrical response versus oscillation amplitude of the sensor (signal) was found to be significant. Signals from the specifically-bound spores were clearly distinguishable in shape from those of the physisorbed streptavidin-coated polystyrene microbeads. The analytical model presented here enables estimation of the biomolecular interaction forces from the measured response. Thus, probing biomolecular interaction forces using the described technique can quantitatively detect pathogens and distinguish specific from non-specific interactions, with potential applicability to rapid point-of-care detection. This also serves as a potential tool for rapid force-spectroscopy, affinity-based biomolecular screening and mapping of molecular interaction networks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a detailed quantum oscillation study of the Fermi surface of the recently discovered Yb-based heavy fermion superconductor beta-YbAlB4. We compare the data, obtained at fields from 10 to 45 T, to band structure calculations performed using the local density approximation. Analysis of the data suggests that f holes participate in the Fermi surface up to the highest magnetic fields studied. We comment on the significance of these findings for the unconventional superconducting properties of this material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A generalized acoustic equation is used to identify the mechanisms driving combustion instability. The relationship between the unsteady rate of heat release and the flow is found to influence significantly the frequency of oscillation. A kinematic flame model is reviewed and used to describe the unsteady combustion in a premixed ducted flame and in a typical lean premixed industrial gas turbine. Comparison is made between theory and experiment. | A generalized acoustic equation is used to identify the mechanisms driving combustion instability. The relationship between the unsteady rate of heat release and the flow is found to influence significantly the frequency of oscillation. A kinematic flame model is reviewed and used to describe the unsteady combustion in a premixed ducted flame and in a typical lean premixed industrial gas turbine. Comparison is made between theory and experiment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The unstable combustion that can occur in combustion chambers is a major problem for aeroengines and ground-based industrial gas turbines. Nowadays, CFD provides a flexible, low cost tool to supplement direct measurement. This paper presents simulations of combustion oscillations in a liquid-fuelled experimental rig at the University of Cambridge. Linear acoustic theory was used to describe the acoustic waves propagating upstream and downstream of the combustion zone and to develop inlet and outlet boundary conditions just upstream and downstream of the combustion region enabling the CFD calculation to be efficiently concentrated on the combustion zone. A combustion oscillation was found to occur with its predicted frequency in good agreement with experimental measurements. More details about the unstable combustion can be obtained from the simulation results. The approach developed here is expected to provide a powerful tool for the design and operation of stable combustion systems. Copyright © 2009 by ASME.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the characterisation of self-excited oscillations in a kerosene burner. The combustion instability exhibits two different modes and frequencies depending on the air flow rate. Experimental results reveal the influence of the spray to shift between these two modes. Pressure and heat release fluctuations have been measured simultaneously and the flame transfer function has been calculated from these measurements. The Mie scattering technique has been used to record spray fluctuations in reacting conditions with a high speed camera. Innovative image processing has enabled us to obtain fluctuations of the Mie scattered light from the spray as a temporal signal acquired simultaneously with pressure fluctuations. This has been used to determine a transfer function relating the image intensity and hence the spray fluctuations to changes in air velocity. This function has identified the different role the spray plays in the two modes of instability. At low air flow rates, the spray responds to an unsteady air flow rate and the time varying spray characteristics lead to unsteady combustion. At higher air flow rates, effective evaporation means that the spray dynamics are less important, leading to a different flame transfer function and frequency of self-excited oscillation. In conclusion, the combustion instabilities observed are closely related with the fluctuations of the spray motion and evaporation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a new solid state implementation of a quantum computer (quputer) using ballistic single electrons as flying qubits in 1D nanowires. We use a single electron pump (SEP) to prepare the initial state and a single electron transistor (SET) to measure the final state. Single qubit gates are implemented using quantum dots as phase shifters and electron waveguide couplers as beam splitters. A Coulomb coupler acts as a 2-qubit gate, using a mutual phase modulation effect. Since the electron phase coherence length in GaAs/AlGaAs heterostructures is of the order of 30$\mu$m, several gates (tens) can be implemented before the system decoheres.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a surface stabilized ferroelectric liquid crystal cell, optical transmission oscillations have been revealed accompanying mechanical vibrations caused by fast field reversal. Special bookshelf textures, so-called "rainbow", were used in the experiments. Temperature dependences of the oscillation parameters have been studied. The temperature dependence of the oscillation frequency suggests that the some oscillation resonances correspond to modes of the liquid crystals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A model of lubricated cold strip rolling (1, 2) is extended to the thin foil regime. The model considers the evolution of asperity geometry and lubricant pressure through the bite, treating the strip using a conventional slab model. The elastic deflections of the rolls are coupled into the problem using an elastic finite element model. Friction between the roll and the asperities on the strip is modelled using the Coulomb and Tresca friction factor approaches. The shear stress in the Coulomb friction model is limited to the shear yield stress of the strip. A novel modification to these standard friction laws is used to mimic slipping friction in the reduction regions and sticking friction in a central neutral zone. The model is able to reproduce the sticking and slipping zones predicted by Fleck et al. (3). The variation of rolling load, lubricant film thickness and asperity contact area with rolling speed is examined, for conditions typical of rolling aluminium foil from a thickness of 50 to 25 μm. T he contact area and hence friction rises as the speed drops, leading to a large increase in rolling load. This increase is considerably more marked using Coulomb friction as compared with the friction factor approach. Forward slip increases markedly as the speed falls and a significant sticking region develops.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thin film transistors (TFTs) utilizing an hydrogenated amorphous silicon (a-Si:H) channel layer exhibit a shift in the threshold voltage with time under the application of a gate bias voltage due to the creation of metastable defects. These defects are removed by annealing the device with zero gate bias applied. The defect removal process can be characterized by a thermalization energy which is, in turn, dependent upon an attempt-to-escape frequency for defect removal. The threshold voltage of both hydrogenated and deuterated amorphous silicon (a-Si:D) TFTs has been measured as a function of annealing time and temperature. Using a molecular dynamics simulation of hydrogen and deuterium in a silicon network in the H2 * configuration, it is shown that the experimental results are consistent with an attempt-to-escape frequency of (4.4 ± 0.3) × 1013 Hz and (5.7 ± 0.3) × 1013 Hz for a-Si:H and a-Si:D respectively which is attributed to the oscillation of the Si-H and Si-D bonds. Using this approach, it becomes possible to describe defect removal in hydrogenated and deuterated material by the thermalization energies of (1.552 ± 0.003) eV and (1.559 ± 0.003) eV respectively. This correlates with the energy per atom of the Si-H and Si-D bonds. © 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerical techniques for non-equilibrium condensing flows are presented. Conservation equations for homogeneous gas-liquid two-phase compressible flows are solved by using a finite volume method based on an approximate Riemann solver. The phase change consists of the homogeneous nucleation and growth of existing droplets. Nucleation is computed with the classical Volmer-Frenkel model, corrected for the influence of the droplet temperature being higher than the steam temperature due to latent heat release. For droplet growth, two types of heat transfer model between droplets and the surrounding steam are used: a free molecular flow model and a semi-empirical two-layer model which is deemed to be valid over a wide range of Knudsen number. The computed pressure distribution and Sauter mean droplet diameters in a convergent-divergent (Laval) nozzle are compared with experimental data. Both droplet growth models capture qualitatively the pressure increases due to sudden heat release by the non-equilibrium condensation. However the agreement between computed and experimental pressure distributions is better for the two-layer model. The droplet diameter calculated by this model also agrees well with the experimental value, whereas that predicted by the free molecular model is too small. Condensing flows in a steam turbine cascade are calculated at different Mach numbers and inlet superheat conditions and are compared with experiments. Static pressure traverses downstream from the blade and pressure distributions on the blade surface agree well with experimental results in all cases. Once again, droplet diameters computed with the two-layer model give best agreement with the experiments. Droplet sizes are found to vary across the blade pitch due to the significant variation in expansion rate. Flow patterns including oblique shock waves and condensation-induced pressure increases are also presented and are similar to those shown in the experimental Schlieren photographs. Finally, calculations are presented for periodically unsteady condensing flows in a low expansion rate, convergent-divergent (Laval) nozzle. Depending on the inlet stagnation subcooling, two types of self-excited oscillations appear: a symmetric mode at lower inlet subcooling and an asymmetric mode at higher subcooling. Plots of oscillation frequency versus inlet sub-cooling exhibit a hysteresis loop, in accord with observations made by other researchers for moist air flow. Copyright © 2006 by ASME.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A near-field optical microscope (NFOM) has been developed that combines the features of a near-field optical microscope and an atomic force microscope. Improved control over tip-sample separation has led to improved optical imaging and independent surface topography information. The tip oscillation is normal to the sample plane thereby reducing lateral forces - important for nonperturbative imaging of soft samples. Both topographic images and reflection near-field optical images are presented which demonstrate the capability of the system. © 1996 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermal barrier coatings with a columnar microstructure are prone to erosion damage by a mechanism of surface cracking upon impact by small foreign particles. In order to explore this erosion mechanism, the elastic indentation and the elastic-plastic indentation responses of a columnar thermal barrier coating to a spherical indenter were determined by the finite element method and by analytical models. It was shown that the indentation response is intermediate between that of a homogeneous half-space and that given by an elastic-plastic mattress model (with the columns behaving as independent non-linear springs). The sensitivity of the indentation behaviour to geometry and to the material parameters was explored: the diameter of the columns, the gap width between columns, the coefficient of Coulomb friction between columns and the layer height of the thermal barrier coating. The calculations revealed that the level of induced tensile stress is sufficient to lead to cracking of the columns at a depth of about the column radius. It was also demonstrated that the underlying soft bond coat can undergo plastic indentation when the coating comprises parallel columns, but this is less likely for the more realistic case of a random arrangement of tapered columns. © 2009 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A tribometer, based on a pin-on-disc machine, uses a PZT drive to produce small sinusoidal fluctuations of sliding speed. The frequency and amplitude of these fluctuations can be controlled, and the dynamic response measured. Preliminary test results show that the dynamic friction variation is influenced by the contact materials, normal force, oscillation frequency and steady sliding speed. The variation of friction force amplitude and phase with frequency gives clues about the underlying state variables determining the friction. Modelling studies illustrate the expected behaviour for idealized friction laws governed by, for example, sliding speed, contact temperature, and "rate-state" laws. © 2008 SAE International.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flutter and divergence instabilities have been advocated to be possible in elastic structures with Coulomb friction, but no direct experimental evidence has ever been provided. Moreover, the same types of instability can be induced by tangential follower forces, but these are commonly thought to be of extremely difficult, if not impossible, practical realization. Therefore, a clear experimental basis for flutter and divergence induced by friction or follower-loading is still lacking. This is provided for the first time in the present article, showing how a follower force of tangential type can be realized via Coulomb friction and how this, in full agreement with the theory, can induce a blowing-up vibrational motion of increasing amplitude (flutter) or an exponentially growing motion (divergence). In addition, our results show the limits of a treatment based on the linearized equations, so that nonlinearities yield the initial blowing-up vibration of flutter to reach eventually a steady state. The presented results give full evidence to potential problems in the design of mechanical systems subject to friction, open a new perspective in the realization of follower-loading systems and of innovative structures exhibiting 'unusual' dynamical behaviors. © 2011 Elsevier Ltd.