30 resultados para Control Identification.


Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Rijke tube is used to demonstrate model-based control of a combustion instability, where controller design is based on measurement of the unstable system. The Rijke tube used was of length 0.75m and had a grid-stabilised laminar flame in its lower half. A microphone was used as a sensor and a loudspeaker as an actuator for active control. The open loop transfer function (OLTF) required for controller design was that from the actuator to the sensor. This was measured experimentally by sending a signal with two components to the actuator. The first was a control component from an empirically designed controller, which was used to stabilise the system, thus eliminating the non-linear limit cycle. The second was a high bandwidth signal for identification of the OLTF. This approach to measuring the OLTF is generic and can be applied to large-scale combustors. The measured OLTF showed that only the fundamental mode of the tube was unstable; this was consistent with the OLTF predicted by a mathematical model of the tube, involving 1-D linear acoustic waves and a time delay heat release model. Based on the measured OLTF, a controller to stabilise the instability was designed using Nyquist techniques. This was implemented and was seen to result in an 80dB reduction in the microphone pressure spectrum. A robustness study was performed by adding an additional length to the top of the Rijke tobe. The controller was found to achieve control up to an increase in tube length of 19%. This compared favourably with the empirical controller, which lost control for an increase in tube length of less than 3%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An approach to reconfiguring control systems in the event of major failures is advocated. The approach relies on the convergence of several technologies which are currently emerging: Constrained predictive control, High-fidelity modelling of complex systems, Fault detection and identification, and Model approximation and simplification. Much work is needed, both theoretical and algorithmic, to make this approach practical, but we believe that there is enough evidence, especially from existing industrial practice, for the scheme to be considered realistic. After outlining the problem and proposed solution, the paper briefly reviews constrained predictive control and object-oriented modelling, which are the essential ingredients for practical implementation. The prospects for automatic model simplification are also reviewed briefly. The paper emphasizes some emerging trends in industrial practice, especially as regards modelling and control of complex systems. Examples from process control and flight control are used to illustrate some of the ideas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper suggests a method for identification in the v-gap metric. For a finite number of frequency response samples, a problem for identification in the v-gap metric is formulated and an approximate solution is described. It uses an iterative technique for obtaining an L2-gap approximation. Each stage of the iteration involves solving an LMI optimisation. Given a known stabilising controller and the L2-gap approximation, it is shown how to derive a v-gap approximation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Steering feel, or steering torque feedback, is widely regarded as an important aspect of the handling quality of a vehicle. Despite this, there is little theoretical understanding of its role. This paper describes an initial attempt to model the role of steering torque feedback arising from lateral tyre forces. The path-following control of a nonlinear vehicle model is implemented using a time-varying model predictive controller. A series of Kalman filters are used to represent the driver's ability to generate estimates of the system states from noisy sensory measurements, including the steering torque. It is found that under constant road friction conditions, the steering torque feedback reduces path-following errors provided the friction is sufficiently high to prevent frequent saturation of the tyres. When the driver model is extended to allow identification of, and adaptation to, a varying friction condition, it is found that the steering torque assists in the accurate identification of the friction condition. The simulation results give insight into the role of steering torque feedback arising from lateral tyre forces. The paper concludes with recommendations for further work. © 2011 Taylor & Francis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper will provide a rationale for developing control systems based on the availability of automated identification (Auto ID) information provision. Much of the Auto-ID research has to date focussed on developing the essential infrastructure for dynamically extracting, networking and storing product data. These developments will help to revolutionise the accuracy, quality and timeliness of data acquired by Business Information Systems and should lead to major cost savings and performance improvements as a result. This paper introduces an additional phase of Auto ID research and development in which the nature of control system decisions is reconsidered in the light of the availability of ubiquitous, unique, item-level information. The paper will: (i) Indicate why the availability of ubiquitous, unique, item-level data can enable enhanced and fundamentally different control approaches and highlight potential benefits from control systems incorporating this Auto ID data (ii) Demonstrate what is required to develop control systems based around the availability of Auto ID data. (iii) Outline the research challenges in determining how such systems will be developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent developments in modeling driver steering control with preview are reviewed. While some validation with experimental data has been presented, the rigorous application of formal system identification methods has not yet been attempted. This paper describes a steering controller based on linear model-predictive control. An indirect identification method that minimizes steering angle prediction error is developed. Special attention is given to filtering the prediction error so as to avoid identification bias that arises from the closed-loop operation of the driver-vehicle system. The identification procedure is applied to data collected from 14 test drivers performing double lane change maneuvers in an instrumented vehicle. It is found that the identification procedure successfully finds parameter values for the model that give small prediction errors. The procedure is also able to distinguish between the different steering strategies adopted by the test drivers. © 2006 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On-site tracking in open construction sites is often difficult because of the large amounts of items that are present and need to be tracked. Additionally, the amounts of occlusions/obstructions present create a highly complex tracking environment. Existing tracking methods are based mainly on Radio Frequency technologies, including Global Positioning Systems (GPS), Radio Frequency Identification (RFID), Bluetooth and Wireless Fidelity (Wi-Fi, Ultra-Wideband, etc). These methods require considerable amounts of pre-processing time since they need to manually deploy tags and keep record of the items they are placed on. In construction sites with numerous entities, tags installation, maintenance and decommissioning become an issue since it increases the cost and time needed to implement these tracking methods. This paper presents a novel method for open site tracking with construction cameras based on machine vision. According to this method, video feed is collected from on site video cameras, and the user selects the entity he wishes to track. The entity is tracked in each video using 2D vision tracking. Epipolar geometry is then used to calculate the depth of the marked area to provide the 3D location of the entity. This method addresses the limitations of radio frequency methods by being unobtrusive and using inexpensive, and easy to deploy equipment. The method has been implemented in a C++ prototype and preliminary results indicate its effectiveness