17 resultados para Construction sites.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monitoring the location of resources on large scale, congested, outdoor sites can be performed more efficiently with vision tracking, as this approach does not require any pre-tagging of resources. However, the greatest impediment to the use of vision tracking in this case is the lack of detection methods that are needed to automatically mark the resources of interest and initiate the tracking. This paper presents such a novel method for construction worker detection that localizes construction workers in video frames. The proposed method exploits motion, shape, and color cues to narrow down the detection regions to moving objects, people, and finally construction workers, respectively. The three cues are characterized by using background subtraction, the histogram of oriented gradients (HOG), and the HSV color histogram. The method has been tested on videos taken in various environments. The results demonstrate its suitability for automatic initialization of vision trackers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cement-bentonite (CB) cutoff walls have long been used to control ground water flow and contaminant migration at polluted sites. Hydraulic conductivity and unconfined compressive strength are two short-term properties often used by industry and owners in CB specification and are important parameters discussed in this paper. For polluted sites, long-term compatibility is also an important issue. These properties are coupled to a number of external factors including the mix design, construction sequence, presence/absence of contaminants at the site. Additional short-term properties for engineering assessment include the stressstrain characteristics in both drained and undrained shear in both with and without confinement as well as one-dimensional consolidation properties. Long term CB properties are affected by aging, reaction chemistry, drying, in situ stress state, and interaction with the polluted environment. © 2013 Taylor & Francis Group.