35 resultados para Constant routine


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The twist elastic constant, K2, and the rotational viscosity coefficient, γ1, are of importance when the response lime for the in-plane switching mode is studied. Since adding dopants is one technique to improve the response characteristics, the effect of dopants on these physical properties is significant. The effect on K2 and γ1 of adding alkyl(alkoxy) phenylcyclopentenones and alkyl(alkoxy) cyanobiphenyls to the base mixture ZLI-4792 together with their temperature dependence have been investigated using different temperature scales. The reduced temperature scale showed the effect of these dopants on K2 is small. On the other hand, the temperature dependence of γ1 depends on both the absolute temperature scale and the reduced temperature scale. Therefore, it is clear that the choice of temperature scale with which to compare γ1 for different systems raises fundamental questions which way not have a unique answer. 2000 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A receding horizon steering controller is presented, capable of pushing an oversteering nonlinear vehicle model to its handling limit while travelling at constant forward speed. The controller is able to optimise the vehicle path, using a computationally efficient and robust technique, so that the vehicle progression along a track is maximised as a function of time. The resultant method forms part of the solution to the motor racing objective of minimising lap time. © 2011 AACC American Automatic Control Council.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A driver model is presented capable of optimising the trajectory of a simple dynamic nonlinear vehicle, at constant forward speed, so that progression along a predefined track is maximised as a function of time. In doing so, the model is able to continually operate a vehicle at its lateral-handling limit, maximising vehicle performance. The technique used forms a part of the solution to the motor racing objective of minimising lap time. A new approach of formulating the minimum lap time problem is motivated by the need for a more computationally efficient and robust tool-set for understanding on-the-limit driving behaviour. This has been achieved through set point-dependent linearisation of the vehicle model and coupling the vehicle-track system using an intrinsic coordinate description. Through this, the geometric vehicle trajectory had been linearised relative to the track reference, leading to new path optimisation algorithm which can be formed as a computationally efficient convex quadratic programming problem. © 2012 Copyright Taylor and Francis Group, LLC.