30 resultados para Cone.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of fluid-structure interaction simulations of an aerodynamic tension-cone supersonic decelerator prototype intended for large mass payload deployment in planetary explorations are discussed. The fluid-structure interaction computations combine large deformation analysis of thin shells with large-eddy simulation of compressible turbulent flows using a loosely coupled approach to enable quantification of the dynamics of the vehicle. The simulation results are compared with experiments carried out at the NASA Glenn Research Center. Reasonably good agreement between the simulations and the experiment is observed throughout a deflation cycle. The simulations help to illuminate the details of the dynamic progressive buckling of the tension-cone decelerator that ultimately results in the collapse of the structure as the inflation pressure is decreased. Furthermore, the tension-cone decelerator exhibits a transient oscillatory behavior under impulsive loading that ultimately dies out. The frequency of these oscillations was determined to be related to the acoustic time scale in the compressed subsonic region between the bow shock and the structure. As shown, when the natural frequency of the structure and the frequency of the compressed subsonic region approximately match, the decelerator exhibits relatively large nonaxisymetric oscillations. The observed response appears to be a fluid-structure interaction resonance resulting from an acoustic chamber (pistonlike) mode exciting the structure. Copyright © 2013 by Christopher Porter, R. Mark Rennie, Eric J. Jumper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inflatable aerodynamic decelerators present potential advantages for planetary entry in missions of robotic and human exploration. The design of these structures face many engineering challenges, including complex deformable geometries, anisotropic material response, and coupled shockturbulence interactions. In this paper, we describe a comprehensive computational fluid-structure interaction study of an inflation cycle of a tension cone decelerator in supersonic flow and compare the simulations with earlier published experimental results. The aeroshell design and flow conditions closely match recent experiments conducted at Mach 2.5. The structural model is a 16-sided polygonal tension cone with seams between each segment. The computational model utilizes adaptive mesh refinement, large-eddy simulation, and shell mechanics with self-contact modeling to represent the flow and structure interaction. This study focuses on the dynamics of the structure as the inflation pressure varies gradually, and the behavior of forces experienced by the flexible and rigid (the payload capsule) structures. © 2011 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An elastic-plastic constitutive model for transversely isotropic compressible solids (foams) has been developed. A quadratic yield surface with four parameters and one hardening function is proposed. Associated plastic flow is assumed and the yield surface evolves in a self-similar manner calibrated by the uniaxial compressive (or tensile) response of the cellular solid in the axial direction. All material constants in the model (elastic and plastic) can be determined from a combination of a total of four uniaxial and shear tests. The model is used to predict the indentation response of balsa wood to a conical indenter. For the three cone angles considered in this study, very good agreement is found between the experimental measurements and the finite element (FE) predictions of the transversely isotropic cellular solid model. On the other hand, an isotropic foam model is shown to be inadequate to capture the indentation response. © 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a method of rapidly producing computer-generated holograms that exhibit geometric occlusion in the reconstructed image. Conceptually, a bundle of rays is shot from every hologram sample into the object volume.We use z buffering to find the nearest intersecting object point for every ray and add its complex field contribution to the corresponding hologram sample. Each hologram sample belongs to an independent operation, allowing us to exploit the parallel computing capability of modern programmable graphics processing units (GPUs). Unlike algorithms that use points or planar segments as the basis for constructing the hologram, our algorithm's complexity is dependent on fixed system parameters, such as the number of ray-casting operations, and can therefore handle complicated models more efficiently. The finite number of hologram pixels is, in effect, a windowing function, and from analyzing the Wigner distribution function of windowed free-space transfer function we find an upper limit on the cone angle of the ray bundle. Experimentally, we found that an angular sampling distance of 0:01' for a 2:66' cone angle produces acceptable reconstruction quality. © 2009 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inflatable aerodynamic decelerators have potential advantages for planetary re-entry in robotic and human exploration missions. It is theorized that volume-mass characteristics of these decelerators are superior to those of common supersonic/subsonic parachutes and after deployment they may suffer no instabilities at high Mach numbers. A high fidelity computational fluid-structure interaction model is employed to investigate the behavior of tension cone inflatable aeroshells at supersonic speeds up to Mach 2.0. The computational framework targets the large displacements regime encountered during the inflation of the decelerator using fast level set techniques to incorporate boundary conditions of the moving structure. The preliminary results indicate large but steady aeroshell displacement with rich dynamics, including buckling of the inflatable torus that maintains the decelerator open under normal operational conditions, owing to interactions with the turbulent wake. Copyright © 2009 by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Submarines are efficient sources of low frequency radiated noise due to the vibrations induced by the rotation of the propeller in a non uniform wake. In this work the possibility of using inertial actuators to reduce the far field sound pressure is investigated. The submerged vessel is modelled as a cylindrical shell with two conical end caps. Complicating effects such as ring stiffeners, bulkheads and the fluid loading are taken into account. A harmonic radial force is transmitted from the propeller to the hull through the stern end cone and it is tonal at the blade passing frequency (rotational speed of the shaft multiplied by the number of blades). The actuators are attached at the inside of the prow end cone to form a circumferential array. Both Active Vibration Control (AVC) and Active Structural Acoustic Control (ASAC) are analysed and it is shown that the inertial actuators can significantly reduce the far field sound pressure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A one-dimensional analytical model is developed for the steady state, axisymmetric, slender flow of saturated powder in a rotating perforated cone. Both the powder and the fluid spin with the cone with negligible slip in the hoop direction. They migrate up the wall of the cone along a generator under centrifugal force, which also forces the fluid out of the cone through the powder layer and the porous wall. The flow thus evolves from an over-saturated paste at inlet into a nearly dry powder at outlet. The powder is treated as a Mohr-Coulomb granular solid of constant void fraction and permeability. The shear traction at the wall is assumed to be velocity and pressure dependent. The fluid is treated as Newtonian viscous. The model provides the position of the colour line (the transition from over- to under-saturation) and the flow velocity and thickness profiles over the cone. Surface tension effects are assumed negligible compared to the centrifugal acceleration. Two alternative conditions are considered for the flow structure at inlet: fully settled powder at inlet, and progressive settling of an initially homogeneous slurry. The position of the colour line is found to be similar for these two cases over a wide range of operating conditions. Dominant dimensionless groups are identified which control the position of the colour line in a continuous conical centrifuge. Experimental observations of centrifuges used in the sugar industry provide preliminary validation of the model. © 2011 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An analysis is given of velocity and pressure-dependent sliding flow of a thin layer of damp granular material in a spinning cone. Integral momentum equations for steady state, axisymmetric flow are derived using a boundary layer approximation. These reduce to two coupled first-order differential equations for the radial and circumferential sliding velocities. The influence of viscosity and friction coefficients and inlet boundary conditions is explored by presentation of a range of numerical results. In the absence of any interfacial shear traction the flow would, with increasing radial and circumferential slip, follow a trajectory from inlet according to conservation of angular momentum and kinetic energy. Increasing viscosity or friction reduces circumferential slip and, in general, increases the residence time of a particle in the cone. The residence time is practically insensitive to the inlet velocity. However, if the cone angle is very close to the friction angle then the residence time is extremely sensitive to the relative magnitude of these angles. © 2011 Authors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The final stages of pinchoff and breakup of dripping droplets of near-inviscid Newtonian fluids are studied experimentally for pure water and ethanol. High-speed imaging and image analysis are used to determine the angle and the minimum neck size of the cone-shaped extrema of the ligaments attached to dripping droplets in the final microseconds before pinchoff. The angle is shown to steadily approach the value of 18.0 ±0.4, independently of the initial flow conditions or the type of breakup. The filament thins and necks following a τ2 /3 law in terms of the time remaining until pinchoff, regardless of the initial conditions. The observed behavior confirms theoretical predictions. © 2012 American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The final stages of pinchoff and breakup of dripping droplets of near-inviscid Newtonian fluids are studied experimentally for pure water and ethanol. High-speed imaging and image analysis are used to determine the angle and the minimum neck size of the cone-shaped extrema of the ligaments attached to dripping droplets in the final microseconds before pinchoff. The angle is shown to steadily approach the value of 18.0 ± 0.4°, independently of the initial flow conditions or the type of breakup. The filament thins and necks following a τ(2/3) law in terms of the time remaining until pinchoff, regardless of the initial conditions. The observed behavior confirms theoretical predictions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ballistic performance of clamped circular carbon fibre reinforced polymer (CFRP) and Ultra High Molecular Weight Polyethylene (UHMWPE) fibre composite plates of equal areal mass and 0/90 lay-up were measured and compared with that of monolithic 304 stainless steel plates. The effect of matrix shear strength upon the dynamic response was explored by testing: (i) CFRP plates with both a cured and uncured matrix and (ii) UHMWPE laminates with identical fibres but with two matrices of different shear strength. The response of these plates when subjected to mid-span, normal impact by a steel ball was measured via a dynamic high speed shadow moiré technique. Travelling hinges emanate from the impact location and travel towards the supports. The anisotropic nature of the composite plate results in the hinges travelling fastest along the fibre directions and this results in square-shaped moiré fringes in the 0/90 plates. Projectile penetration of the UHMWPE and the uncured CFRP plates occurs in a progressive manner, such that the number of failed plies increases with increasing velocity. The cured CFRP plate, of high matrix shear strength, fails by cone-crack formation at low velocities, and at higher velocities by a combination of cone-crack formation and communition of plies beneath the projectile. On an equal areal mass basis, the low shear strength UHMWPE plate has the highest ballistic limit followed by the high matrix shear strength UHMWPE plate, the uncured CFRP, the steel plate and finally the cured CFRP plate. We demonstrate that the high shear strength UHMWPE plate exhibits Cunniff-type ballistic limit scaling. However, the observed Cunniff velocity is significantly lower than that estimated from the laminate properties. The data presented here reveals that the Cunniff velocity is limited in its ability to characterise the ballistic performance of fibre composite plates as this velocity is independent of the shear properties of the composites: the ballistic limit of fibre composite plates increases with decreasing matrix shear strength for both CFRP and UHMWPE plates. © 2013 Elsevier Masson SAS. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the problem of positive observer design for positive systems defined on solid cones in Banach spaces. The design is based on the Hilbert metric and convergence properties are analyzed in the light of the Birkhoff theorem. Two main applications are discussed: positive observers for systems defined in the positive orthant, and positive observers on the cone of positive semi-definite matrices with a view on quantum systems. © 2011 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Convergence analysis of consensus algorithms is revisited in the light of the Hilbert distance. The Lyapunov function used in the early analysis by Tsitsiklis is shown to be the Hilbert distance to consensus in log coordinates. Birkhoff theorem, which proves contraction of the Hilbert metric for any positive homogeneous monotone map, provides an early yet general convergence result for consensus algorithms. Because Birkhoff theorem holds in arbitrary cones, we extend consensus algorithms to the cone of positive definite matrices. The proposed generalization finds applications in the convergence analysis of quantum stochastic maps, which are a generalization of stochastic maps to non-commutative probability spaces. ©2010 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper introduces a new metric and mean on the set of positive semidefinite matrices of fixed-rank. The proposed metric is derived from a well-chosen Riemannian quotient geometry that generalizes the reductive geometry of the positive cone and the associated natural metric. The resulting Riemannian space has strong geometrical properties: it is geodesically complete, and the metric is invariant with respect to all transformations that preserve angles (orthogonal transformations, scalings, and pseudoinversion). A meaningful approximation of the associated Riemannian distance is proposed, that can be efficiently numerically computed via a simple algorithm based on SVD. The induced mean preserves the rank, possesses the most desirable characteristics of a geometric mean, and is easy to compute. © 2009 Society for Industrial and Applied Mathematics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is increasing evidence for the involvement of lipid membranes in both the functional and pathological properties of α-synuclein (α-Syn). Despite many investigations to characterize the binding of α-Syn to membranes, there is still a lack of understanding of the binding mode linking the properties of lipid membranes to α-Syn insertion into these dynamic structures. Using a combination of an optical biosensing technique and in situ atomic force microscopy, we show that the binding strength of α-Syn is related to the specificity of the lipid environment (the lipid chemistry and steric properties within a bilayer structure) and to the ability of the membranes to accommodate and remodel upon the interaction of α-Syn with lipid membranes. We show that this interaction results in the insertion of α-Syn into the region of the headgroups, inducing a lateral expansion of lipid molecules that can progress to further bilayer remodeling, such as membrane thinning and expansion of lipids out of the membrane plane. We provide new insights into the affinity of α-Syn for lipid packing defects found in vesicles of high curvature and in planar membranes with cone-shaped lipids and suggest a comprehensive model of the interaction between α-Syn and lipid bilayers. The ability of α-Syn to sense lipid packing defects and to remodel membrane structure supports its proposed role in vesicle trafficking.