39 resultados para Compressive Strength
Resumo:
PURPOSE: Stabilisation/solidification (S/S) has emerged as an efficient and cost-effective technology for the treatment of contaminated soils. However, the performance of S/S-treated soils is governed by several intercorrelated variables, which complicates the optimisation of the treatment process design. Therefore, it is desirable to develop process envelopes, which define the range of operating variables that result in acceptable performance. METHODS: In this work, process envelopes were developed for S/S treatment of contaminated soil with a blend of hydrated lime (hlime) and ground granulated blast furnace slag (GGBS) as the binder (hlime/GGBS = 1:4). A sand contaminated with a mixture of heavy metals and petroleum hydrocarbons was treated with 5%, 10% and 20% binder dosages, at different water contents. The effectiveness of the treatment was assessed using unconfined compressive strength (UCS), permeability, acid neutralisation capacity and contaminant leachability with pH, at set periods. RESULTS: The UCS values obtained after 28 days of treatment were up to ∼800 kPa, which is quite low, and permeability was ∼10(-8) m/s, which is higher than might be required. However, these values might be acceptable in some scenarios. The binder significantly reduced the leachability of cadmium and nickel. With the 20% dosage, both metals met the waste acceptance criteria for inert waste landfill and relevant environmental quality standards. CONCLUSIONS: The results show that greater than 20% dosage would be required to achieve a balance of acceptable mechanical and leaching properties. Overall, the process envelopes for different performance criteria depend on the end-use of the treated material.
Resumo:
Following the global stringent legislations regulating the wastes generated from the drilling process of oil exploration and production activities, the management of hazardous drill cuttings has become one of the pressing needs confronting the petroleum industry. Most of the prevalent treatment techniques adopted by oil companies are extremely expensive and/or the treated product has to be landfilled without any potential end-use; thereby rendering these solutions unsustainable. The technique of stabilisation/solidification is being investigated in this research to treat drill cuttings prior to landfilling or for potential re-use in construction products. Two case studies were explored namely North Sea and Red Sea. Given the known difficulties with stabilising/solidifying oils and chlorides, this research made use of model drill cutting mixes based on typical drill cutting from the two case studies, which contained 4.2% and 10.95% average concentrations of hydrocarbons; and 2.03% and 2.13% of chlorides, by weight respectively. A number of different binders, including a range of conventional viz. Portland cement (PC) as well as less-conventional viz. zeolite, or waste binders viz. cement kiln dust (CKD), fly ash and compost were tested to assess their ability to treat the North Sea and Red Sea model drill cuttings. The dry binder content by weight was 10%, 20% and 30%. In addition, raw drill cuttings from one of the North Sea offshore rigs were stabilised/solidified using 30% PC. The characteristics of the final stabilised/solidified product were finally compared to those of thermally treated cuttings. The effectiveness of the treatment using the different binder systems was compared in the light of the aforementioned two contaminants only. A set of physical tests (unconfined compressive strength (UCS)), chemical tests (NRA leachability) and micro-structural examinations (using scanning electron microscopy (SEM), and X-ray diffraction (XRD)) were used to evaluate the relative performance of the different binder mixes in treating the drill cuttings. The results showed that the observed UCS covered a wide range of values indicating various feasible end-use scenarios for the treated cuttings within the construction industry. The teachability results showed the reduction of the model drill cuttings to a stable non-reactive hazardous waste, compliant with the UK acceptance criteria for non-hazardous landfills: (a) by most of the 30% and 20% binders for chloride concentrations, and (b) by the 20% and 30% of compost-PC and CKD-PC binders for the Red Sea cuttings. The 20% and 30% compost-PC and CKD-PC binders successfully reduced the leached oil concentration of the North Sea cuttings to inert levels. Copyright 2007, Society of Petroleum Engineers.
Resumo:
Comprehensive understanding of the long-term performance of cement-bentonite slurry trench cut-off walls is essential as these mixes may degrade when exposed to aggressive environments or when subjected to prolonged drying. A series of wetting-drying and immersion experiments was carried out to evaluate the durability characteristics of laboratory mixed samples and block field samples from 40 days to 11 years of age. For the wetting-drying tests, the samples buried in medium graded sand were subjected to periodical flooding and drying cycles. They were then used for permeability testing and unconfined compressive strength (UCS) testing. For the immersion tests, the samples confined in perforated molds were submerged in magnesium sulfate solution for 16 weeks and their microstructures were then analyzed using X-ray diffraction (XRD) technique. This paper identifies the effects of contaminant exposure on durability of cement-bentonite and the effects of aging by comparing 11 years old samples to younger samples. Test results showed that young or previously contaminated cement-bentonite mixes are more susceptible to sulfate attack than old or less contaminated mixes. Copyright ASCE 2008.
Resumo:
This paper introduces current work in collating data from different projects using soil mix technology and establishing trends using artificial neural networks (ANNs). Variation in unconfined compressive strength as a function of selected soil mix variables (e.g., initial soil water content and binder dosage) is observed through the data compiled from completed and on-going soil mixing projects around the world. The potential and feasibility of ANNs in developing predictive models, which take into account a large number of variables, is discussed. The main objective of the work is the management and effective utilization of salient variables and the development of predictive models useful for soil mix technology design. Based on the observed success in the predictions made, this paper suggests that neural network analysis for the prediction of properties of soil mix systems is feasible. © ASCE 2011.
Resumo:
The microstructure and mechanical properties of sintered stainless steel powder, of composition AISI 420, have been measured. Ball-milled powder comprising nanoscale grains was sintered to bulk specimens by two alternative routes: hot-pressing and microlaser sintering. The laser-sintered alloy has a porosity of 6% and comprises a mixture of delta ferrite and tempered martensite, and the relative volume fraction varies along the axis of the specimen due to a thermal cycle that evolves with progressive deposition. In contrast, the hot-pressed alloy has a porosity of 0.7% and exhibits a martensitic lath structure with carbide particles at the boundaries of the prior austenite grains. These differences in microstructure lead to significant differences in mechanical properties. For example, the uniaxial tensile strength of the hot-pressed material is one-half of its compressive strength, due to void initiation at the carbide particles at the prior austenite grain boundaries. Nanoindentation measurements reveal a size effect in hardness and also reveal the sensitivity of hardness to the presence of mechanical polishing and electropolishing. © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
A biomimetic reactor has been developed to synthesize hydroxyapatite- gelatin (HAP-GEL) nanocomposites that mimic ultra-structures of natural bone. We hypothesize that in the reactor, gelatin concentration controls morphology and packing structures of HAP crystals. To test the hypothesis, three types of mechanical tests were conducted, including nanoindentation, compression, and fracture tests. Nanoindentation tests in conjunction with computer modeling were used to assess effects on gelatin-induced microstructures of HAP. The results showed that increasing gelatin content increased both the plane strain modulus and the fracture toughness. The gelatin appeared to shorten the HAP crystal distance, which consolidated the internal structure of the composite and made the material more rigid. The fracture toughness KIC increased partially due to the effect of fiber bridging between gelatin molecules. The highest fracture toughness (1.12 MPa·1/2) was equivalent to that of pure hydroxyapatite. The compressive strength of the HAP-GEL (107.7±26.8 MPa) was, however, less sensitive to microstructural changes and was within the range of natural cortical bone (human 170 MPa, pig: 100 MPa). The compression strength was dominated by void inclusions while the nanoindentation response reflected ultra-structural arrangement of the crystals. The gelatin concentration is likely to modify crystal arrangement as demonstrated in TEM experiments but not void distribution at macroscopic levels. © 2006 Materials Research Society.
Resumo:
An assessment of the underwater blast resistance of sandwich beams with a prismatic Y-truss core is presented, utilizing three-dimensional finite element calculations. Results show a significant performance benefit for sandwich construction when compared to a monolithic plate of the same mass when the sandwich core combines high shear strength with low compressive strength.
Resumo:
Hybrid glass-carbon 2D braided composites with varying carbon contents are impacted using a gas gun by impactors of masses 12.5 and 44.5. g, at impact energies up to 50. J. The damage area detected by ultrasound C-scan is found to increase roughly linearly with impact energy, and is larger for the lighter impactor at the same impact energy. The area of whitening of the glass tows on the distal side corresponds with the measured C-scan damage area. X-ray imaging shows more intense damage, at the same impact energy, for a higher-mass impactor. Braids with more glass content have a modest increase in density, decrease in modulus, and reduction in the C-scan area and dent depth at the impact site, particularly at the higher impact energies. Impact damage is found to reduce significantly the compressive strength, giving up to a 26% reduction at the maximum impact energy. © 2012 Elsevier Ltd.
Resumo:
Portland cement has been widely used for stabilisation/solidification (S/S) treatment of contaminated soils. However, there is a dearth of literature on pH-dependent leaching of contaminants from cement-treated soils. This study investigates the leachability of Cu, Pb, Ni, Zn and total petroleum hydrocarbons (TPH) from a mixed contaminated soil. A sandy soil was spiked with 3000 mg/kg each of Cd, Cu, Pb, Ni and Zn, and 10,000 mg/kg of diesel, and treated with ordinary Portland cement (CEM I). Four different binder dosages, 5%, 10%, 15% and 20% (m/m) and different water contents ranging from 13%-19% dry weight were used in order to find a safe operating envelope for the treatment process. The pH-dependent leaching behaviour of the treated soil was monitored over an 84-day period using a 3-point acid neutralisation capacity (ANC) test. The monolithic leaching test was also conducted. Geotechnical properties such as unconfined compressive strength (UCS), hydraulic conductivity and porosity were assessed over time. The treated soils recorded lower leachate concentrations of Ni and Zn compared to the untreated soil at the same pH depending on binder dosage. The binder had problems with Pb stabilisation and TPH leachability was independent of pH and binder dosage. The hydraulic conductivity of the mixes was generally of the order, 10-8 m/sec, while the porosity ranged from 26%-44%. The results of selected performance properties are compared with regulatory limits and the range of operating variables that lead to acceptable performance described. © 2012 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences.
Resumo:
This study was aimed at evaluating the mechanical and pH-dependent leaching performance of a mixed contaminated soil treated with a mixture of Portland cement (CEMI) and pulverised fuel ash (PFA). It also sought to develop operating envelopes, which define the range(s) of operating variables that result in acceptable performance. A real site soil with low contaminant concentrations, spiked with 3000mg/kg each of Cd, Cu, Pb, Ni and Zn, and 10,000mg/kg of diesel, was treated with one part CEMI and four parts PFA (CEMI:PFA=1:4) using different binder and water contents. The performance was assessed over time using unconfined compressive strength (UCS), hydraulic conductivity, acid neutralisation capacity (ANC) and pH-dependent leachability of contaminants. With binder dosages ranging from 5% to 20% and water contents ranging from 14% to 21% dry weight, the 28-day UCS was up to 500kPa and hydraulic conductivity was around 10-8m/s. With leachant pH extremes of 7.2 and 0.85, leachability of the contaminants was in the range: 0.02-3500mg/kg for Cd, 0.35-1550mg/kg for Cu, 0.03-92mg/kg for Pb, 0.01-3300mg/kg for Ni, 0.02-4010mg/kg for Zn, and 7-4884mg/kg for total petroleum hydrocarbons (TPHs), over time. Design charts were produced from the results of the study, which show the water and/or binder proportions that could be used to achieve relevant performance criteria. The charts would be useful for the scale-up and design of stabilisation/solidification (S/S) treatment of similar soil types impacted with the same types of contaminants. © 2013 Elsevier Ltd.
Resumo:
This paper presents details of the installation and performance of carbonated soil-MgO columns using a laboratory-scale model auger setup. MgO grout was mixed with the soil using the auger and the columns were then carbonated with gaseous CO2 introduced in two different ways: one using auger mixing and the other through a perforated plastic tube system inserted into the treated column. The performance of the columns in terms of unconfined compressive strength (UCS), stiffness, strain at failure and microstructure (using X-ray diffraction and scanning electron microscopy) showed that the soil-MgO columns were carbonated very quickly (in under 1 h) and yielded relatively high strength values, of 2.4-9.4 MPa, which on average were five times that of corresponding 28-day ambient cured uncarbonated columns. This confirmed, together with observations of dense microstructure and hydrated magnesium carbonates, that a good degree of carbonation had taken place. The results also showed that the carbonation method and period have a significant effect on the resulting performance, with the carbonation through the perforated pipe producing the best results. Copyright © 2013 by ASTM International.
Resumo:
Cement-bentonite (CB) cutoff walls have long been used to control ground water flow and contaminant migration at polluted sites. Hydraulic conductivity and unconfined compressive strength are two short-term properties often used by industry and owners in CB specification and are important parameters discussed in this paper. For polluted sites, long-term compatibility is also an important issue. These properties are coupled to a number of external factors including the mix design, construction sequence, presence/absence of contaminants at the site. Additional short-term properties for engineering assessment include the stressstrain characteristics in both drained and undrained shear in both with and without confinement as well as one-dimensional consolidation properties. Long term CB properties are affected by aging, reaction chemistry, drying, in situ stress state, and interaction with the polluted environment. © 2013 Taylor & Francis Group.
Resumo:
This paper investigates the potential for carbonating reactive magnesia (MgO) to serve as a more sustainable soil stabilization method by providing rapid and significant strength development of the stabilized soil through absorbing substantial quantities of CO2. Gaseous CO2 was forced through laboratory-prepared reactive MgO-treated soil samples in a triaxial cell set-up, and their resulting mechanical and microstructural properties were investigated using unconfined compressive strength, X-ray diffraction, and scanning electron microscopy. The results showed that adequately carbonated MgO-treated soils could, in a few hours, reach a similar strength range to corresponding 28 day Portland cement (PC)-stabilized soils. Hydrated magnesium carbonates, namely nesquehonite and hydromagnesite-dypingite, were the main products of the carbonated MgO in the soil, and were responsible for the significant strength development.
Resumo:
Classes of lattice material are reviewed, and their fracture response is explored in the context of the core of a sandwich panel. Attention is focussed on the strength of a sandwich plate with centre-cracked core made from an elastic-brittle square lattice. Predictions are summarised for the un-notched strength of the sandwiched core and for the fracture toughness of the lattice under remote tension, remote compression or remote shear. It is assumed that the lattice fails when the local stress in the cell walls attains the tensile or compressive strength of the solid, or when local buckling occurs. The local failure mechanism that dictates the unnotched strength may be different from that dictating the fracture toughness. Fracture mechanism maps are generated in order to reveal the dominant local failure mechanism for any given cell wall material.
Resumo:
Portland cement (PC) is the most widely used binder for ground improvement. However, there are significant environmental impacts associated with its production in terms of high energy consumption and CO2 emissions. Hence, the use of industrial by-products materials or new low-carbon footprint alternative cements has been encouraged. Ground granulated blastfurnace slag (GGBS), a by-product of the steel industry, has been successfully used for such an application, usually activated with an alkali such as lime or PC. In this study the use of MgO as a novel activator for GGBS in ground improvement of soft soils is addressed and its performance was compared to the above two conventional activators as well as PC alone. The GGBS:activator ratio used in this study was 9:1. A range of tests was performed at three curing periods (7, 28 and 90 days), including unconfined compressive strength (UCS), permeability and microstructure analysis. The results show that the MgO performed as the most efficient activator yielding the highest strength and the lowest permeability indicating a very high stabilisation efficiency of the system. © 2012 American Society of Civil Engineers.