25 resultados para Cohesive laws
Resumo:
We develop a finite-element method for the simulation of dynamic fracture and fragmentation of thin-shells. The shell is spatially discretized with subdivision shell elements and the fracture along the element edges is modeled with a cohesive law. In order to follow the propagation and branching of cracks, subdivision shell elements are pre-fractured ab initio and the crack opening is constrained prior to crack nucleation. This approach allows for shell fracture in an in-plane tearing mode, a shearing mode, or a bending of hinge mode. The good performance of the method is demonstrated through the simulation of petalling failure experiments in aluminum plates. © 2005 Elsevier B.V. All rights reserved.
Resumo:
Over the last 50 years, the city of Venice, Italy, has observed a significant increase in the frequency of flooding. Numerous engineering solutions have been proposed, including the use of movable gates located at the three lagoon inlets. A key element in the prediction of performance is the estimation of settlements of the foundation system of the gates. The soils of Venice Lagoon are characterized by very erratic depositional patterns of clayey silts, resulting in an extremely heterogeneous stratigraphy with discontinuous layering. The soils are also characterized by varying contents of coarse and fine-grained particles. In contrast, the mineralogical composition of these deposits is quite uniform, which allows us to separate the influence of mineralogy from that of grain size distribution. A comprehensive geotechnical testing program was performed to assess the one-dimensional compression of Venice soils and examine the factors affecting the response in the transition from one material type to another. The compressibility of these natural silty clayey soils can be described by a single set of constitutive laws incorporating the relative fraction of granular to cohesive material. © 2007 ASCE.
Resumo:
The geological profile of many submerged slopes on the continental shelf consists of normally to lightly overconsolidated clays with depths ranging from a few meters to hundreds of meters. For these soils, earthquake loading can generate significant excess pore water pressures at depth, which can bring the slope to a state of instability during the event or at a later time as a result of pore pressure redistribution within the soil profile. Seismic triggering mechanisms of landslide initiation for these soils are analyzed with the use of a new simplified model for clays which predicts realistic variations of the stress-strain-strength relationships as well as pore pressure generation during dynamic loading in simple shear. The proposed model is implemented in a finite element program to analyze the seismic response of submarine slopes. These analyses provide an assessment of the critical depth and estimated displacements of the mobilized materials and thus are important components for the estimation of submarine landslide-induced tsunamis. © 2003 Elsevier B.V. All rights reserved.
Resumo:
We propose new scaling laws for the properties of planetary dynamos. In particular, the Rossby number, the magnetic Reynolds number, the ratio of magnetic to kinetic energy, the Ohmic dissipation timescale and the characteristic aspect ratio of the columnar convection cells are all predicted to be power-law functions of two observable quantities: the magnetic dipole moment and the planetary rotation rate. The resulting scaling laws constitute a somewhat modified version of the scalings proposed by Christensen and Aubert. The main difference is that, in view of the small value of the Rossby number in planetary cores, we insist that the non-linear inertial term, uu, is negligible. This changes the exponents in the power-laws which relate the various properties of the fluid dynamo to the planetary dipole moment and rotation rate. Our scaling laws are consistent with the available numerical evidence. © The Authors 2013 Published by Oxford University Press on behalf of The Royal Astronomical Society.
Resumo:
In order to account for interfacial friction of composite materials, an analytical model based on contact geometry and local friction is proposed. A contact area includes several types of microcontacts depending on reinforcement materials and their shape. A proportion between these areas is defined by in-plane contact geometry. The model applied to a fibre-reinforced composite results in the dependence of friction on surface fibre fraction and local friction coefficients. To validate this analytical model, an experimental study on carbon fibrereinforced epoxy composites under low normal pressure was performed. The effects of fibre volume fraction and fibre orientation were studied, discussed and compared with analytical model results. © Springer Science+Business Media, LLC 2012.