19 resultados para Climatological variability
Resumo:
We present in this paper a new multivariate probabilistic approach to Acoustic Pulse Recognition (APR) for tangible interface applications. This model uses Principle Component Analysis (PCA) in a probabilistic framework to classify tapping pulses with a high degree of variability. It was found that this model, achieves a higher robustness to pulse variability than simpler template matching methods, specifically when allowed to train on data containing high variability. © 2011 IEEE.
Resumo:
A key function of the brain is to interpret noisy sensory information. To do so optimally, observers must, in many tasks, take into account knowledge of the precision with which stimuli are encoded. In an orientation change detection task, we find that encoding precision does not only depend on an experimentally controlled reliability parameter (shape), but also exhibits additional variability. In spite of variability in precision, human subjects seem to take into account precision near-optimally on a trial-to-trial and item-to-item basis. Our results offer a new conceptualization of the encoding of sensory information and highlight the brain's remarkable ability to incorporate knowledge of uncertainty during complex perceptual decision-making.
Resumo:
It is commonly believed that visual short-term memory (VSTM) consists of a fixed number of "slots" in which items can be stored. An alternative theory in which memory resource is a continuous quantity distributed over all items seems to be refuted by the appearance of guessing in human responses. Here, we introduce a model in which resource is not only continuous but also variable across items and trials, causing random fluctuations in encoding precision. We tested this model against previous models using two VSTM paradigms and two feature dimensions. Our model accurately accounts for all aspects of the data, including apparent guessing, and outperforms slot models in formal model comparison. At the neural level, variability in precision might correspond to variability in neural population gain and doubly stochastic stimulus representation. Our results suggest that VSTM resource is continuous and variable rather than discrete and fixed and might explain why subjective experience of VSTM is not all or none.