164 resultados para Cathodic cage plasma nitriding


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nano-sized TiNi powder with an average size of 50nm was consolidated using spark plasma sintering (SPS) at 800 °C for 5min. A layer of anatase TiO 2 coating was formed on the sintered TiNi by chemical reaction with a hydrogen peroxide (H2O2) solution at 60 °C followed by heat treatment at 400 °C to enhance the bioactivity of the metal surface. Cell culture using osteoblast cells and a biomimetic test in simulated body fluid proved the biocompatibility of the chemically treated SPS TiNi. © IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A compact electron cyclotron wave resonance (ECWR) source has been developed for the high rate deposition of hydrogenated tetrahedral amorphous carbon (ta-C:H). The ECWR provides growth rates of up to 1.5 nm/s over a 4-inch diameter and an independent control of the deposition rate and ion energy. The ta-C:H was deposited using acetylene as the source gas and was characterized as having an sp3 content of up to 77%, plasmon energy of 27 eV, refractive index of 2.45, hydrogen content of about 30%, optical gap of up to 2.1 eV and RMS surface roughness of 0.04 nm. © 1999 Elsevier Science S.A. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A compact electron cyclotron wave resonance (ECWR) source has been developed for the high rate deposition of hydrogenated tetrahedral amorphous carbon (ta-C:H). The ECWR provides growth rates of up to 900 angstrom/min and an independent control of the deposition rate and ion energy. The ta-C:H was deposited using acetylene as the source gas and was characterized in terms of its bonding, stress and friction coefficient. The results indicated that the ta-C:H produced using this source fulfills the necessary requirements for applications requiring enhanced tribological performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A compact electron cyclotron wave resonance (ECWR) source has been developed for the high rate deposition of hydrogenated tetrahedral amorphous carbon (ta-C:H). The ECWR provides growth rates of up to 900 Å/min over a 4″ diameter and an independent control of the deposition rate and ion energy. The ta-C:H was deposited using acetylene as the source gas and was characterized in terms of its sp3 content, mass density, intrinsic stress, hydrogen content, C-H bonding, Raman spectra, optical gap, surface roughness and friction coefficient. The results obtained indicated that the film properties were maximized at an ion energy of approximately 167 eV, corresponding to an energy per daughter carbon ion of 76 eV. The relationship between the incident ion energy and film densification was also explained in terms of the subsurface implantation of carbon ions into the growing film.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The addition of silicon to hydrogenated amorphous carbon can have the advantageous effect of lowering the compressive stress, improving the thermal stability of its hydrogen and maintaining a low friction coefficient up to high humidity. Most experiments to date have been on a-C1-xSix:H alloys deposited by RF plasma enhanced chemical vapour deposition (PECVD). This method gives alloys with considerable hydrogen content and only moderate hardness. Here, we use a high plasma density source, the electron cyclotron wave resonance (ECWR) source, to prepare films with a high deposition rate. The composition and bonding in the alloys is determined by XPS, visible and UV Raman and FTIR spectroscopy. We find that it is possible to produce hard, low stress, low friction, almost humidity insensitive a-C1-xSix:H alloys with a good optical transparency and a band gap over 2 eV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogenated amorphous carbon nitride (a-C:N:H) has been synthesized using a high plasma density electron cyclotron wave resonance (ECWR) technique using N2 and C2H2 as source gases, at different ratios and a fixed ion energy (80 eV). The composition, structure and bonding state of the films were investigated and related to their optical and electrical properties. The nitrogen content in the film rises rapidly until the N2/C2H2 gas ratio reaches 2 and then increases more gradually, while the deposition rate decreases steeply, placing an upper limit for the nitrogen incorporation at 30 at%. For nitrogen contents above 20 at%, the band gap and sp3-bonded carbon fraction decrease from 1.7 to 1.1 eV and approximately 65 to 40%, respectively. Films with higher nitrogen content are less dense than the original hydrogenated tetrahedral amorphous carbon (ta-C:H) film but, because they have a relatively high band gap (1.1 eV), high resistivity (109 Ω cm) and moderate sp3-bonded carbon fraction (40%), they should be classed as polymeric in nature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The addition of silicon to hydrogenated amorphous carbon can have the advantageous effect of lowering the compressive stress, improving the thermal stability of its hydrogen, and maintaining a low friction coefficient up to high humidity. Most experiments to date have been on hydrogenated amorphous carbon-silicon alloys (a-C1-xSix:H) deposited by rf plasma enhanced chemical vapor deposition. This method gives alloys with sizeable hydrogen content and only moderate hardness. Here we use a high plasma density source known as the electron cyclotron wave resonance source to prepare films with higher sp3 content and lower hydrogen content. The composition and bonding in the alloys is determined by x-ray photoelectron spectroscopy, Rutherford backscattering, elastic recoil detection analysis, visible and ultraviolet (UV) Raman spectroscopy, infrared spectroscopy, and x-ray reflectivity. We find that it is possible to produce relatively hard, low stress, low friction, almost humidity insensitive a-C1-xSix:H alloys with a good optical transparency and a band gap well over 2.5 eV. The friction behavior and friction mechanism of these alloys are studied and compared with that of a-C:H, ta-C:H, and ta-C. We show how UV Raman spectroscopy allows the direct detection of Si-C, Si-Hx, and C-Hx vibrations, not seen in visible Raman spectra. © 2001 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An electron cyclotron wave resonant methane plasma discharge was used for the high rate deposition of hydrogenated amorphous carbon (a-C:H). Deposition rates of up to ∼400 Å/min were obtained over substrates up to 2.5 in. in diameter with a film thickness uniformity of ∼±10%. The deposited films were characterised in terms of their mass density, sp3 and hydrogen contents, C-H bonding, intrinsic stress, scratch resistance and friction properties. The deposited films possessed an average sp3 content, mass density and refractive index of ∼58%, 1.76 g/cm3 and 2.035 respectively.Mechanical characterisation indicated that the films possessed very low steady-state coefficients of friction (ca. 0.06) and a moderate shear strength of ∼141 MPa. Nano-indentation measurements also indicated a hardness and elastic modulus of ∼16.1 and 160 GPa respectively. The critical loads required to induce coating failure were also observed to increase with ion energy as a consequence of the increase in degree of ion mixing at the interface. Furthermore, coating failure under scratch test conditions was observed to take place via fracture within the silicon substrate itself, rather than either in the coating or at the film/substrate interface. © 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A low-pressure methane plasma generated by electron cyclotron wave resonance was characterized in terms of electron temperature, plasma density and composition. Methane plasmas were commonly used in the deposition of hydrogenated amorphous carbon thin films. Little variation in the plasma chemistry was observed by mass spectrometry measurements of the gas phase with increasing electron temperature. The results show that direct electron-impact reactions exert greater influence on the plasma chemistry than secondary ion-neutral reactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to grow carbon nanotubes/nanofibres (CNs) with a high degree of uniformity is desirable in many applications. In this paper, the structural uniformity of CNs produced by plasma enhanced chemical vapour deposition is evaluated for field emission applications. When single isolated CNs were deposited using this technology, the structures exhibited remarkable uniformity in terms of diameter and height (standard deviations were 4.1 and 6.3% respectively of the average diameter and height). The lithographic conditions to achieve a high yield of single CNs are also discussed. Using the height and diameter uniformity statistics, we show that it is indeed possible to accurately predict the average field enhancement factor and the distribution of enhancement factors of the structures, which was confirmed by electrical emission measurements on individual CNs in an array.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasma Enhanced Chemical Vapour Deposition is an extremely versatile technique for directly growing multiwalled carbon nanotubes onto various substrates. We will demonstrate the deposition of vertically aligned nanotube arrays, sparsely or densely populated nanotube forests, and precisely patterned arrays of nanotubes. The high-aspect ratio nanotubes (∼50 nm in diameter and 5 microns long) produced are metallic in nature and direct contact electrical measurements reveal that each nanotube has a current carrying capacity of 107-108 A/cm2, making them excellent candidates as field emission sources. We examined the field emission characteristics of dense nanotube forests as well as sparse nanotube forests and found that the sparse forests had significantly lower turn-on fields and higher emission currents. This is due to a reduction in the field enhancement of the nanotubes due to electric field shielding from adjacent nanotubes in the dense nanotube arrays. We thus fabricated a uniform array of single nanotubes to attempt to overcome these issues and will present the field emission characteristics of this.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasma enhanced chemical vapour deposition (PECVD) is a controlled technique for the production of vertically aligned multiwall carbon nanotubes for field emission applications. In this paper, we investigate the electrical properties of individual carbon nanotubes which is important for designing field emission devices. PECVD nanotubes exhibit a room temperature resistance of 1-10 kΩ/μm length (resistivity 10-6 to 10-5 Ω m) and have a maximum current carrying capability of 0.2-2 mA (current density 107-108 A/cm2). The field emission characteristics show that the field enhancement of the structures is strongly related to the geometry (height/radius) of the structures and maximum emission currents of ∼ 10 μA were obtained. The failure of nanotubes under field emission is also discussed. © 2002 Elsevier Science B.V. All rights reserved.