33 resultados para Boulder Laboratories (U.S.)
Resumo:
In this paper, we present the analysis of electroosmotic flow in a branched -turn nanofluidic device, which we developed for detection and sorting of single molecules. The device, where the channel depth is only 150 nm, is designed to optically detect fluorescence from a volume as small as 270 attolitres (al) with a common wide-field fluorescent setup. We use distilled water as the liquid, in which we dilute 110 nm fluorescent beads employed as tracer-particles. Quantitative imaging is used to characterize the pathlines and velocity distribution of the electroosmotic flow in the device. Due to the device's complex geometry, the electroosmotic flow cannot be solved analytically. Therefore we use numerical flow simulation to model our device. Our results show that the deviation between measured and simulated data can be explained by the measured Brownian motion of the tracer-particles, which was not incorporated in the simulation.
Resumo:
This paper presents a simple, cost-effective and robust atomic force microscope (AFM), which has been purposely designed and built for use as a teaching aid in undergraduate controls labs. The guiding design principle is to have all components be open and visible to the students, so the inner functioning of the microscope has been made clear to see. All of the parts but one are off the shelf, and assembly time is generally less than two days, which makes the microscope a robust instrument that is readily handled by the students with little chance of damage. While the scanning resolution is nowhere near that of a commercial instrument, it is more than sufficient to take interesting scans of micrometer-scale objects. A survey of students after their having used the AFM resulted in a generally good response, with 80% agreeing that they had a positive learning experience. © 2009 IEEE.