27 resultados para Bilateral balanced occlusion
Resumo:
This paper presents a volumetric formulation for the multi-view stereo problem which is amenable to a computationally tractable global optimisation using Graph-cuts. Our approach is to seek the optimal partitioning of 3D space into two regions labelled as "object" and "empty" under a cost functional consisting of the following two terms: (1) A term that forces the boundary between the two regions to pass through photo-consistent locations and (2) a ballooning term that inflates the "object" region. To take account of the effect of occlusion on the first term we use an occlusion robust photo-consistency metric based on Normalised Cross Correlation, which does not assume any geometric knowledge about the reconstructed object. The globally optimal 3D partitioning can be obtained as the minimum cut solution of a weighted graph.
Resumo:
This paper contains a review of recent results concerning the parametrization of asymptotically stable linear systems using balanced realizations. Particular emphasis is given on the application of these results to system identification. This work is part of a continuing programme aimed at elucidating the role of balanced realization in system identification.
Resumo:
Numerically well-conditioned state-space realisations for all-pass systems, such as Padé approximations to exp(-s), are derived that can be computed using exact integer arithmetic. This is then applied to the a series of functions of exp(-s). It is also shown that the H-infinity norm of the transfer function from the input to the state of a balanced realisation of the Padé approximation of exp(-s) is unity. © 2012 IEEE.
Resumo:
We demonstrate a new method for extracting high-level scene information from the type of data available from simultaneous localisation and mapping systems. We model the scene with a collection of primitives (such as bounded planes), and make explicit use of both visible and occluded points in order to refine the model. Since our formulation allows for different kinds of primitives and an arbitrary number of each, we use Bayesian model evidence to compare very different models on an even footing. Additionally, by making use of Bayesian techniques we can also avoid explicitly finding the optimal assignment of map landmarks to primitives. The results show that explicit reasoning about occlusion improves model accuracy and yields models which are suitable for aiding data association. © 2011. The copyright of this document resides with its authors.