28 resultados para Barrier-free design.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

With increasing demands on storage devices in the modern communication environment, the storage area network (SAN) has evolved to provide a direct connection allowing these storage devices to be accessed efficiently. To optimize the performance of a SAN, a three-stage hybrid electronic/optical switching node architecture based on the concept of a MPLS label switching mechanism, aimed at serving as a multi-protocol label switching (MPLS) ingress label edge router (LER) for a SAN-enabled application, has been designed. New shutter-based free-space multi-channel optical switching cores are employed as the core switch fabric to solve the packet contention and switching path conflict problems. The system-level node architecture design constraints are evaluated through self-similar traffic sourced from real gigabit Ethernet network traces and storage systems. The extension performance of a SAN over a proposed WDM ring network, aimed at serving as an MPLS-enabled transport network, is also presented and demonstrated. © 2012 OSA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports the design and numerical analysis of a three-dimensional biochip plasma blood separator using computational fluid dynamics techniques. Based on the initial configuration of a two-dimensional (2D) separator, five three-dimensional (3D) microchannel biochip designs are categorically developed through axial and plenary symmetrical expansions. These include the geometric variations of three types of the branch side channels (circular, rectangular, disc) and two types of the main channel (solid and concentric). Ignoring the initial transient behaviour and assuming that steady-state flow has been established, the behaviour of the blood fluid in the devices is algebraically analysed and numerically modelled. The roles of the relevant microchannel mechanisms, i.e. bifurcation, constriction and bending channel, on promoting the separation process are analysed based on modelling results. The differences among the different 3D implementations are compared and discussed. The advantages of 3D over 2D separator in increasing separation volume and effectively depleting cell-free layer fluid from the whole cross section circumference are addressed and illustrated. © 2011 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the design and development cycle of a 3D biochip separator and the modelling analysis of flow behaviour in the biochip microchannel features. The focus is on identifying the difference between 2D and 3D implementations as well as developing basic forms of 3D microfluidic separators. Five variants, based around the device are proposed and analysed. These include three variations of the branch channels (circular, rectangular, disc) and two variations of the main channel (solid and concentric). Ignoring the initial transient behaviour and assuming steady state flow has been established, the efficiencies of the flow between the main and side channels for the different designs are analysed and compared with regard to relevant biomicrofluidic laws or effects (bifurcation law, Fahraeus effect, cell-free phenomenon, bending channel effect and laminar flow behaviour). The modelling results identify flow features in microchannels, a constriction and bifurcations and show detailed differences in flow fields between the various designs. The manufacturing process using injection moulding for the initial base case design is also presented and discussed. The work reported here is supported as part of the UK funded 3D-MINTEGRATION project. © 2010 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on the topographical and electrical characterisations of 1 nm thick Al2O3 dielectric films on graphene. The Al 2O3 is grown by sputtering a 0.6 nm Al layer on graphene and subsequentially oxidizing it in an O2 atmosphere. The Al 2O3 layer presents no pinholes and is homogeneous enough to act as a tunnel barrier. A resistance-area product in the mega-ohm micrometer-square range is found. Comparatively, the growth of Al 2O3 by evaporation does not lead to well-wetted films on graphene. Application of this high quality sputtered tunnel barrier to efficient spin injection in graphene is discussed. © 2012 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Up to 50% increase in the power density of the existing pressurized water reactor (PWR)-type reactors can be achieved by the use of internally and externally cooled annular fuel geometry. As a result, the accumulated stock-piles of Pu, especially if incorporated infertile-free inert matrix, can be burnt at a substantially higher rate as compared with the conventional mixed oxide-fueled reactors operating at standard power density. In this work, we explore the basic feasibility of a PWR core fully loaded with Pu incorporated infertile-free fuel of annular internally and externally cooled geometry and operating at 150% of nominal power density. We evaluate basic burnable poison designs, fuel management strategies, and reactivity feedback coefficients. The three-dimensional full core neutronic analysis performed with Studsvik Core Management System showed that the design of such a Pu-loaded annular fuel core is feasible but significantly more challenging than the Pu fertile-free core with solid fuel pins operating at nominal power density. The main difficulty arises from the fact that the annular fuel core requires at least 50% higher initial Pu loading in order to maintain the standard fuel cycle length of 18 months. Such a high Pu loading results in hardening of the neutron spectrum and consequent reduction in reactivity worth of all reactivity control mechanisms and, in some cases, positive moderator temperature coefficient (MTC). The use of isotopically enriched Gd and Er burnable poisons was found to be beneficial with respect to maximizing Pu burnup and reducing power peaking factors. Overall, the annular fertile-free Pu-loaded high-power-density core appears to be feasible, although it still has relatively high power peaking and potential for slightly positive MTC at beginning of cycle. However, we estimate that limiting the power density to 140% of the nominal case would assure acceptable core power peaking and negative MTC at all times during the cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Taper-free and vertically oriented Ge nanowires were grown on Si (111) substrates by chemical vapor deposition with Au nanoparticle catalysts. To achieve vertical nanowire growth on the highly lattice mismatched Si substrate, a thin Ge buffer layer was first deposited, and to achieve taper-free nanowire growth, a two-temperature process was employed. The two-temperature process consisted of a brief initial base growth step at high temperature followed by prolonged growth at lower temperature. Taper-free and defect-free Ge nanowires grew successfully even at 270 °C, which is 90 °C lower than the bulk eutectic temperature. The yield of vertical and taper-free nanowires is over 90%, comparable to that of vertical but tapered nanowires grown by the conventional one-temperature process. This method is of practical importance and can be reliably used to develop novel nanowire-based devices on relatively cheap Si substrates. Additionally, we observed that the activation energy of Ge nanowire growth by the two-temperature process is dependent on Au nanoparticle size. The low activation energy (∼5 kcal/mol) for 30 and 50 nm diameter Au nanoparticles suggests that the decomposition of gaseous species on the catalytic Au surface is a rate-limiting step. A higher activation energy (∼14 kcal/mol) was determined for 100 nm diameter Au nanoparticles which suggests that larger Au nanoparticles are partially solidified and that growth kinetics become the rate-limiting step. © 2011 American Chemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report straight and vertically aligned defect-free GaAs nanowires grown on Si(111) substrates by metal-organic chemical vapor deposition. By deposition of thin GaAs buffer layers on Si substrates, these nanowires could be grown on the buffer layers with much less stringent conditions as otherwise imposed by epitaxy of III-V compounds on Si. Also, crystal-defect-free GaAs nanowires were grown by using either a two-temperature growth mode consisting of a short initial nucleation step under higher temperature followed by subsequent growth under lower temperature or a rapid growth rate mode with high source flow rate. These two growth modes not only eliminated planar crystallographic defects but also significantly reduced tapering. Core-shell GaAs-AlGaAs nanowires grown by the two-temperature growth mode showed improved optical properties with strong photoluminescence and long carrier life times. © 2011 American Chemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the modern engineering design cycle the use of computational tools becomes a neces- sity. The complexity of the engineering systems under consideration for design increases dramatically as the demands for advanced and innovative design concepts and engineering products is expanding. At the same time the advancements in the available technology in terms of computational resources and power, as well as the intelligence of the design software, accommodate these demands and make them a viable approach towards the chal- lenge of real-world engineering problems. This class of design optimisation problems is by nature multi-disciplinary. In the present work we establish enhanced optimisation capabil- ities within the Nimrod/O tool for massively distributed execution of computational tasks through cluster and computational grid resources, and develop the potential to combine and benefit from all the possible available technological advancements, both software and hardware. We develop the interface between a Free Form Deformation geometry manage- ment in-house code with the 2D airfoil aerodynamic efficiency evaluation tool XFoil, and the well established multi-objective heuristic optimisation algorithm NSGA-II. A simple airfoil design problem has been defined to demonstrate the functionality of the design sys- tem, but also to accommodate a framework for future developments and testing with other state-of-the-art optimisation algorithms such as the Multi-Objective Genetic Algorithm (MOGA) and the Multi-Objective Tabu Search (MOTS) techniques. Ultimately, heav- ily computationally expensive industrial design cases can be realised within the presented framework that could not be investigated before. © 2012 by the authors. Published by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the modern engineering design cycle the use of computational tools becomes a necessity. The complexity of the engineering systems under consideration for design increases dramatically as the demands for advanced and innovative design concepts and engineering products is expanding. At the same time the advancements in the available technology in terms of computational resources and power, as well as the intelligence of the design software, accommodate these demands and make them a viable approach towards the challenge of real-world engineering problems. This class of design optimisation problems is by nature multi-disciplinary. In the present work we establish enhanced optimisation capabilities within the Nimrod/O tool for massively distributed execution of computational tasks through cluster and computational grid resources, and develop the potential to combine and benefit from all the possible available technological advancements, both software and hardware. We develop the interface between a Free Form Deformation geometry management in-house code with the 2D airfoil aerodynamic efficiency evaluation tool XFoil, and the well established multi-objective heuristic optimisation algorithm NSGA-II. A simple airfoil design problem has been defined to demonstrate the functionality of the design system, but also to accommodate a framework for future developments and testing with other state-of-the-art optimisation algorithms such as the Multi-Objective Genetic Algorithm (MOGA) and the Multi-Objective Tabu Search (MOTS) techniques. Ultimately, heavily computationally expensive industrial design cases can be realised within the presented framework that could not be investigated before. ©2012 AIAA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design of wind turbine blades is a true multi-objective engineering task. The aerodynamic effectiveness of the turbine needs to be balanced with the system loads introduced by the rotor. Moreover the problem is not dependent on a single geometric property, but besides other parameters on a combination of aerofoil family and various blade functions. The aim of this paper is therefore to present a tool which can help designers to get a deeper insight into the complexity of the design space and to find a blade design which is likely to have a low cost of energy. For the research we use a Computational Blade Optimisation and Load Deflation Tool (CoBOLDT) to investigate the three extreme point designs obtained from a multi-objective optimisation of turbine thrust, annual energy production as well as mass for a horizontal axis wind turbine blade. The optimisation algorithm utilised is based on Multi-Objective Tabu Search which constitutes the core of CoBOLDT. The methodology is capable to parametrise the spanning aerofoils with two-dimensional Free Form Deformation and blade functions with two tangentially connected cubic splines. After geometry generation we use a panel code to create aerofoil polars and a stationary Blade Element Momentum code to evaluate turbine performance. Finally, the obtained loads are fed into a structural layout module to estimate the mass and stiffness of the current blade by means of a fully stressed design. For the presented test case we chose post optimisation analysis with parallel coordinates to reveal geometrical features of the extreme point designs and to select a compromise design from the Pareto set. The research revealed that a blade with a feasible laminate layout can be obtained, that can increase the energy capture and lower steady state systems loads. The reduced aerofoil camber and an increased L/. D-ratio could be identified as the main drivers. This statement could not be made with other tools of the research community before. © 2013 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transition of a separated shear layer over a flat plate, in the presence of periodic wakes and elevated free-stream turbulence (FST), is numerically investigated using Large Eddy Simulation (LES). The upper wall of the test section is inviscid and specifically contoured to impose a streamwise pressure distribution over the flat plate to simulate the suction surface of a low-pressure turbine (LPT) blade. Two different distributions representative of a 'high-lift' and an 'ultra high-lift' turbine blade are examined. Results obtained from the current LES compare favourably with the extensive experimental data previously obtained for these configurations. The LES results are then used to further investigate the flow physics involved in the transition process.In line with experimental experience, the benefit of wakes and FST obtained by suppressing the separation bubble, is more pronounced in 'ultra high-lift' design when compared to the 'high-lift' design. Stronger 'Klebanoff streaks' are formed in the presence of wakes when compared to the streaks due to FST alone. These streaks promoted much early transition. The weak Klebanoff streaks due to FST continued to trigger transition in between the wake passing cycles.The experimental inference regarding the origin of Klebanoff streaks at the leading edge has been confirmed by the current simulations. While the wake convects at local free-stream velocity, its impression in the boundary layer in the form of streaks convects much slowly. The 'part-span' Kelvin-Helmholtz structures, which were observed in the experiments when the wake passes over the separation bubble, are also captured. The non-phase averaged space-time plots manifest that reattachment is a localized process across the span unlike the impression of global reattachment portrayed by phase averaging. © 2013 Elsevier Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper explores a design strategy of hopping robots, which makes use of free vibration of an elastic curved beam. In this strategy, the leg structure consists of a specifically shaped elastic curved beam and a small rotating mass that induces free vibration of the entire robot body. Although we expect to improve energy efficiency of locomotion by exploiting the mechanical dynamics, it is not trivial to take advantage of the coupled dynamics between actuation and mechanical structures for the purpose of locomotion. From this perspective, this paper explains the basic design principles through modeling, simulation, and experiments of a minimalistic hopping robot platform. More specifically, we show how to design elastic curved beams for stable hopping locomotion and the control method by using unconventional actuation. In addition, we also analyze the proposed design strategy in terms of energy efficiency and discuss how it can be applied to the other forms of legged robot locomotion. © 1996-2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study presents a novel approach to the design of low-cost and energy-efficient hopping robots, which makes use of free vibration of an elastic curved beam. We found that a hopping robot could benefit from an elastic curved beam in many ways such as low manufacturing cost, light body weight and small energy dissipation in mechanical interactions. A challenging problem of this design strategy, however, lies in harnessing the mechanical dynamics of free vibration in the elastic curved beam: because the free vibration is the outcome of coupled mechanical dynamics between actuation and mechanical structures, it is not trivial to systematically design mechanical structures and control architectures for stable locomotion. From this perspective, this paper investigates a case study of simple hopping robot to identify the design principles of mechanics and control. We developed a hopping robot consisting of an elastic curved beam and a small rotating mass, which was then modeled and analyzed in simulation. The experimental results show that the robot is capable of exhibiting stable hopping gait patterns by using a small actuation with no sensory feedback owing to the intrinsic stability of coupled mechanical dynamics. Furthermore, an additional analysis shows that, by exploiting free vibration of the elastic curved beam, cost of transport of the proposed hopping locomotion can be in the same rage of animals' locomotion including human running. © 2011 IEEE.