27 resultados para B ... n C ... f.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Field angle dependent critical current, magneto-optical microscopy and high resolution electron microscopy studies have been performed on YBa2Cu3O7-delta thin films grown on miscut substrates. High resolution electron microscopy images show that the films studied exhibited clean epitaxial growth with a low density of antiphase boundaries and stacking faults. Any antiphase boundaries (APBs) formed near the film substrate interface rapidly healed rather than extending through the thickness of the film. Unlike vicinal films grown on annealed substrates, which contain a high density of antiphase boundaries, magneto-optical imaging showed no filamentary flux penetration in the films studied. The flux penetration is, however, asymmetric. This is associated with intrinsic pinning of flux strings by the tilted a-b planes and the dependence of the pinning force on the angle between the local field and the a-b planes. Field angle dependent critical current measurements exhibited the striking vortex channeling effect previously reported in vicinal films. By combining the results of three complementary characterization techniques it is shown that extended APB free films exhibit markedly different critical current behavior compared to APB rich films. This is attributed to the role of APB sites as strong pinning centers for Josephson string vortices between the a-b planes. (C) 2003 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An experimental and numerical investigation into transonic shock/boundary-layer interactions in rectangular ducts has been performed. Experiments have shown that flow development in the corners of transonic shock/boundary-layer interactions in confined channels can have a significant impact on the entire flowfield. As shock strength is increased fromˆž = 1:3 to 1.5, the flowfield becomes very slightly asymmetrical. The interaction of corner flows with one another is thought to be a potential cause of this asymmetry. Thus, factors that govern the size of corner interactions (such as interaction strength) and their proximity to one another (such as tunnel aspect ratio) can affect flow symmetry. The results of the computational study show reasonable agreement with experiments, although simulations with particular turbulence models predict highly asymmetrical solutions for flows that were predominantly symmetrical in experiments. These discrepancies are attributed to the tendency of numerical schemes to overprediction corner-interaction size, and this also accounts for why computational fluid dynamics predicts the onset of asymmetry at lower shock strengths than in experiments. The findings of this study highlight the importance of making informed decisions about imposing artificial constraints on symmetry and boundary conditions for internal transonic flows. Future effort into modeling corner flows accurately is required. Copyright © 2011 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Silver paint has been tested as a soldering agent for DyBaCuO single-domain welding. Junctions have been manufactured on Dy-Ba-Cu-O single-domains cut either along planes parallel to the c-axis or along the ab-planes. Microstructural and superconducting characterisations of the samples have been performed. For both types of junctions, the microstructure in the joined area is very clean: no secondary phase or Ag particles segregation has been observed. Electrical and magnetic measurements for all configurations of interest are reported $\rho(T)$ curves, and Hall probe mapping). The narrow resistive superconducting transition reported for all configurations shows that the artificial junction does not affect significantly the measured superconducting properties of the material.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In contrast to the wealth of data describing the neural mechanisms underlying classical conditioning, we know remarkably little about the mechanisms involved in acquisition of explicit contingency awareness. Subjects variably acquire contingency awareness in classical conditioning paradigms, in which they are able to describe the temporal relationship between a conditioned cue and its outcome. Previous studies have implicated the hippocampus and prefrontal cortex in the acquisition of explicit knowledge, although their specific roles remain unclear. We used functional magnetic resonance imaging to track the trial-by-trial acquisition of explicit knowledge in a concurrent trace and delay conditioning paradigm. We show that activity in bilateral middle frontal gyrus and parahippocampal gyrus correlates with the accuracy of explicit contingency awareness on each trial. In contrast, amygdala activation correlates with conditioned responses indexed by skin conductance responses (SCRs). These results demonstrate that brain regions known to be involved in other aspects of learning and memory also play a specific role, reflecting on each trial the acquisition and representation of contingency awareness.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes a computational study of lean premixed high pressure methane-air flames, using Computational Fluid Dynamics (CFD) together with a reactor network approach. A detailed chemical reaction mechanism is employed to predict pollutant concentrations, placing emphasis on nitrogen oxide emissions. The reacting flow field is divided into separate zones in which homogeneity of the physical and chemical conditions prevails. The defined zones are interconnected forming an Equivalent Reactor Network (ERN). Three flames are examined for which experimental data is available. Flame A is characterised by an equivalence ratio of 0.43 while Flames B and C are richer with equivalence ratios of 0.5 and 0.56 respectively. Computations are performed for a range of operating conditions, quantifying the effect in the emitted NOx levels. Model predictions are compared against the available experimental data. Sensitivity analysis is performed to investigate the effect of the network size, in order to define the optimum number of reactors for accurate predictions of the species mass fractions. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present in two parts an assessment of global manufacturing. In the first part, we review economic development, pollution, and carbon emissions from a country perspective, tracking the rise of China and other developing countries. The results show not only a rise in the economic fortunes of the newly industrializing nations, but also a significant rise in global pollution, particularly air pollution and CO2 emissions largely from coal use, which alter and even reverse previous global trends. In the second part, we change perspective and quantitatively evaluate two important technical strategies to reduce pollution and carbon emissions: energy efficiency and materials recycling. We subdivide the manufacturing sector on the basis of the five major subsectors that dominate energy use and carbon emissions: (a) iron and steel, (b) cement, (c) plastics, (d) paper, and (e) aluminum. The analysis identifies technical constraints on these strategies, but by combined and aggressive action, industry should be able to balance increases in demand with these technical improvements. The result would be high but relatively flat energy use and carbon emissions. The review closes by demonstrating the consequences of extrapolating trends in production and carbon emissions and suggesting two options for further environmental improvements, materials efficiency, and demand reduction. © 2013 by Annual Reviews. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pico-PV is an excellent technology for bringing electric light to rural areas in the developing world and replacing kerosene lanterns and candles. However, as pico-PV is a comparatively new technology, relatively little is known about appropriate methods for sustainable product development and deployment. For this reason current dissemination methods are often ineffective and unsustainable. This research aims to help project developers deploy pico-PV technologies successfully and in a sustainable manner. To achieve this, a conceptual framework of key sustainability criteria along the value chain was developed and tested. The analysis revealed that the most important criteria for the sustainable deployment of pico-PV systems are: (a) easy and safe operation of the product; (b) that a system for product return is established; (c) the retailer understands the target market and (d) the end-user is aware of the product's existence and its benefits. This research reveals that criteria (b) and (c) are of greatest concern. In light of these findings, the authors propose to focus on the following five factors; namely: (a) raising awareness for certification and creating market reassurance; (b) introducing support mechanisms to facilitate local repair; (c) using existing supply channels and establishing in-country (dis)assembly; (d) introducing financial support mechanisms at product supply stages and; (e) undertaking marketing campaigns. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

© 2004 The Combustion Institute. Published by Elsevier Inc. All rights reserved. In piston engines and in gas turbines, the injection of liquid fuel often leads to the formation of a liquid film on the combustor wall. If a flame reaches this zone, undesired phenomena such as coking may occur and diminish the lifetime of the engine. Moreover, the effect of such an interaction on maximum wall heat fluxes, flame quenching, and pollutant formation is largely unknown. This paper presents a numerical study of the interaction of a premixed flame with a cold wall covered with a film of liquid fuel. Simulations show that the presence of the film leads to a very rich zone at the wall in which the flame cannot propagate. As a result, the flame wall distance remains larger with liquid fuel than it is for a dry wall, and maximum heat fluxes are smaller. The nature of the interaction of flame wall interaction with a liquid fuel is also different from the classical flame/dry wall interaction: it is controlled mainly by chemical mechanisms and not by the thermal quenching effect observed for flames interacting with dry walls: the existence of a very rich zone created above the liquid film is the main mechanism controlling quenching.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have grown carbon nanotubes using Fe and Ni catalyst films deposited by atomic layer deposition. Both metals lead to catalytically active nanoparticles for growing vertically aligned nanotube forests or carbon fibres, depending on the growth conditions and whether the substrate is alumina or silica. The resulting nanotubes have narrow diameter and wall number distributions that are as narrow as those grown from sputtered catalysts. The state of the catalyst is studied by in-situ and ex-situ X-ray photoemission spectroscopy. We demonstrate multi-directional nanotube growth on a porous alumina foam coated with Fe prepared by atomic layer deposition. This deposition technique can be useful for nanotube applications in microelectronics, filter technology, and energy storage. © 2014 AIP Publishing LLC.