111 resultados para Artificial Intelligence (AI)
Resumo:
This book is devoted to the rapidly growing highly interdisciplinary field of embodied artificial intelligence involving researchers from areas as diverse as computer science, engineering, cognitive science, neuroscience, biology, ...
Resumo:
The discipline of Artificial Intelligence (AI) was born in the summer of 1956 at Dartmouth College in Hanover, New Hampshire. Half of a century has passed, and AI has turned into an important field whose influence on our daily lives can hardly be overestimated. The original view of intelligence as a computer program - a set of algorithms to process symbols - has led to many useful applications now found in internet search engines, voice recognition software, cars, home appliances, and consumer electronics, but it has not yet contributed significantly to our understanding of natural forms of intelligence. Since the 1980s, AI has expanded into a broader study of the interaction between the body, brain, and environment, and how intelligence emerges from such interaction. This advent of embodiment has provided an entirely new way of thinking that goes well beyond artificial intelligence proper, to include the study of intelligent action in agents other than organisms or robots. For example, it supplies powerful metaphors for viewing corporations, groups of agents, and networked embedded devices as intelligent and adaptive systems acting in highly uncertain and unpredictable environments. In addition to giving us a novel outlook on information technology in general, this broader view of AI also offers unexpected perspectives into how to think about ourselves and the world around us. In this chapter, we briefly review the turbulent history of AI research, point to some of its current trends, and to challenges that the AI of the 21st century will have to face. © Springer-Verlag Berlin Heidelberg 2007.
Resumo:
The field of Artificial Intelligence, which started roughly half a century ago, has a turbulent history. In the 1980s there has been a major paradigm shift towards embodiment. While embodied artificial intelligence is still highly diverse, changing, and far from "theoretically stable", a certain consensus about the important issues and methods has been achieved or is rapidly emerging. In this non-technical paper we briefly characterize the field, summarize its achievements, and identify important issues for future research. One of the fundamental unresolved problems has been and still is how thinking emerges from an embodied system. Provocatively speaking, the central issue could be captured by the question "How does walking relate to thinking?" © Springer-Verlag Berlin Heidelberg 2004.
Resumo:
This article discusses the issues of adaptive autonomous navigation as a challenge of artificial intelligence. We argue that, in order to enhance the dexterity and adaptivity in robot navigation, we need to take into account the decentralized mechanisms which exploit physical system-environment interactions. In this paper, by introducing a few underactuated locomotion systems, we explain (1) how mechanical body structures are related to motor control in locomotion behavior, (2) how a simple computational control process can generate complex locomotion behavior, and (3) how a motor control architecture can exploit the body dynamics through a learning process. Based on the case studies, we discuss the challenges and perspectives toward a new framework of adaptive robot control. © Springer-Verlag Berlin Heidelberg 2007.
Resumo:
Holistic representations of natural scenes is an effective and powerful source of information for semantic classification and analysis of arbitrary images. Recently, the frequency domain has been successfully exploited to holistically encode the content of natural scenes in order to obtain a robust representation for scene classification. In this paper, we present a new approach to naturalness classification of scenes using frequency domain. The proposed method is based on the ordering of the Discrete Fourier Power Spectra. Features extracted from this ordering are shown sufficient to build a robust holistic representation for Natural vs. Artificial scene classification. Experiments show that the proposed frequency domain method matches the accuracy of other state-of-the-art solutions. © 2008 Springer Berlin Heidelberg.
Resumo:
The need for more flexible, adaptable and customer-oriented warehouse operations has been increasingly identified as an important issue by today's warehouse companies due to the rapidly changing preferences of the customers that use their services. Motivated by manufacturing and other logistics operations, in this paper we argue on the potential application of product intelligence in warehouse operations as an approach that can help warehouse companies address these issues. We discuss the opportunities of such an approach using a real example of a third-party-logistics warehouse company and we present the benefits it can bring in their warehouse management systems. © 2013 Springer-Verlag.