26 resultados para Arnold Veimer


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanisms of material removal were studied during the erosion of two unfilled elastomers (natural rubber and epoxidised natural rubber). The effects of impact velocity and of lubrication by silicone oil were investigated. The development of surface features due to single impacts and during the early stages of erosion was followed by scanning electron microscopy. The basic material removal mechanism at impact angles of both 30° and 90° involves the formation and growth of fine fatigue cracks under the tensile surface stresses caused by impact. No damage was observed after single impacts; it was found that many successive impacts are necessary for material removal. It was found that the erosion rate has a very strong dependance on impact velocity above about 50 ms-1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we present a wafer level three-dimensional simulation model of the Gate Commutated Thyristor (GCT) under inductive switching conditions. The simulations are validated by extensive experimental measurements. To the authors' knowledge such a complex simulation domain has not been used so far. This method allows the in depth study of large area devices such as GCTs, Gate Turn Off Thyristors (GTOs) and Phase Control Thyristors (PCTs). The model captures complex phenomena, such as current filamentation including subsequent failure, which allow us to predict the Maximum Controllable turn-off Current (MCC) and the Safe Operating Area (SOA) previously impossible using 2D distributed models. © 2012 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper focuses on the causes that lead to the final destruction in standard gate-commutated thyristor (GCT) devices. A new 3-D model approach has been used for simulating the GCT which provides a deep insight into the operation of the GCT in extreme conditions. This allows drawing some conclusions on the complex mechanisms that drive these devices to destruction, previously impossible to explain using 2-D models. © 1963-2012 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, the effects of cooling time prior to reprocessing spent LWR fuel has on the reactor physics characteristics of a PWR fully loaded with homogeneously mixed U-Pu or U-TRU oxide (MOX) fuel is examined. A reactor physics analysis was completed using the CASM04e code. A void reactivity feedback coefficient analysis was also completed for an infinite lattice of fresh fuel assemblies. Some useful conclusions can be made regarding the effect that cooling time prior to reprocessing spent LWR fuel has on a closed homogeneous MOX fuel cycle. The computational analysis shows that it is more neutronically efficient to reprocess cooled spent fuel into homogeneous MOX fuel rods earlier rather than later as the fissile fuel content decreases with time. Also, the number of spent fuel rods needed to fabricate one MOX fuel rod increases as cooling time increases. In the case of TRU MOX fuel, with time, there is an economic tradeoff between fuel handling difficulty and higher throughput of fuel to be reprocessed. The void coefficient analysis shows that the void coefficient becomes progressively more restrictive on fuel Pu content with increasing spent fuel cooling time before reprocessing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this letter, we use a novel 3-D model, earlier calibrated with experimental results on standard gate commutated thyristors (GCTs), with the aim to explain the physics behind the high-power technology (HPT) GCT, to investigate what impact this design would have on 24 mm diameter GCTs, and to clarify the mechanisms that limit safe switching at different dc-link voltages. The 3-D simulation results show that the HPT design can increase the maximum controllable current in 24 mm diameter devices beyond the realm of GCT switching, known as the hard-drive limit. It is proposed that the maximum controllable current becomes independent of the dc-link voltage for the complete range of operating voltage. © 1980-2012 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The model of interconnected numerical device segments can give a prediction on the dynamic performance of large area full wafer devices such as the Gate Commutated Thyristors (GCTs) and can be used as an optimisation tool for designing GCTs. In this study the authors evaluate the relative importance of the shallow p-base thickness, its peak concentration, the depth of the p-base and the buffer peak concentration. © The Institution of Engineering and Technology 2014.